Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 357: 142070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641297

RESUMEN

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Asunto(s)
Compuestos de Amonio , Calcio , Teoría Funcional de la Densidad , Nitratos , Nitrógeno , Fósforo , Adsorción , Calcio/química , Nitrógeno/química , Fósforo/química , Nitratos/química , Compuestos de Amonio/química , Compuestos Férricos/química , Modelos Químicos , Concentración de Iones de Hidrógeno
2.
Plants (Basel) ; 12(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36840136

RESUMEN

Nitrogen is a vital element for soil fertility and crop productivity. The transformation of nitrogen is directly affected by tillage practices for the disturbing soil. The characteristics of different nitrogen forms under different tillage modes are still unclear. A 3-year cycle tillage experiment was carried out to assess the combination of rotary tillage (RT), deep tillage (DT), and shallow rotary tillage (SRT) on nitrogen transformation and distribution, wheat yield and nitrogen balance in fluvo-aquic soil from Huang-Huai-Hai Plain in China. The results showed the rotation tillage cycle with deep tillage in the first year increased the total nitrogen (TN), and the main nitrogen form content in 0-30 cm compared with continued rotary tillage (RT-RT-RT). Moreover, the nitrate (NO3--N) and ammonium nitrogen (NH4+-N) content were improved in 20-40 cm by deep tillage practice with the highest value as 39.88 mg kg-1 under DT-SRT-RT. The time, tillage, and depth significantly affected the different nitrogen forms, but there was no effect on dissolved organic carbon (DON) and soil microbial biomass nitrogen (SMBN) by the interaction of time and tillage. Moreover, compared with RT-RT-RT, the rotation tillage promoted the spike number and kernels per spike of wheat, further increasing the wheat yield and nitrogen partial productivity, and with a better effect under DT-SRT-RT. The NO3--N and NH4+-N trended closer and positively correlated with wheat yield in 0-40 cm in 2019. The rotation tillage with deep tillage improved the different forms of nitrogen in 0-30 cm, wheat yield, and nitrogen partial productivity, and decreased the apparent nitrogen loss. It was suggested as the efficiency tillage practice to improve nitrogen use efficiency and crop yield in this area.

3.
Plants (Basel) ; 12(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36840156

RESUMEN

Optimum tillage practices can create a suitable soil environment, and they improve the soil nutrient status to ensure crop development and yield. In this study, we evaluated the influences of six tillage practices on soil nutrients and maize yields from 2017 to 2019 in fluvo-aquic soil in the North China Plain. The field experiment was carried out by a split design with rotary tillage (RT) and deep tillage (DT) in wheat season in the main plot and no-tillage (NT), subsoiling between the row (SBR), and subsoiling in the row (SIR) in maize season in the subplot. The results showed that the soil nutrient content was higher under the treatments with rotary tillage in the wheat season in the 0-20 cm soil layer, while in the 20-40 cm soil layer, the soil nutrient content was higher under the treatments with deep tillage in the wheat season. The integrated principal component scores indicated that the soil nutrients had improved in the second year. The ecosystem multifunctionality (EMF) index was higher with the treatments with rotary tillage in wheat season in the 0-20 cm soil layer, while it was the highest under DT-SIR at 20-40 cm. Correlation analysis showed that the soil EMF index correlated significantly (p < 0.05) with the soil nutrient content mainly in the 0-40 cm soil layer. The higher maize yield was under the treatments with deep tillage compared to that under the treatments with rotary tillage in the wheat season. The yield-increasing effect was higher under the treatments with subsoiling than those utilizing no-till in the maize season, with the highest average yield of 13,910 kg hm-2 in the DT-SIR during the three years. Maize yield was strongly correlated with nutrients in the subsoil layer. The higher yield stability was found under RT-NT. To sum up, during the three-year experiment, rotary tillage in the wheat season combined with subsoiling in the maize season improved the soil nutrient content and the EMF index in the 0-20 cm layer, while the combination of deep tillage in the wheat season and subsoiling in the maize season improved those indices in the 20-40 cm soil layer, and increased the maize yield, the best one was under DT-SIR.

4.
Sci Total Environ ; 837: 155879, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35568178

RESUMEN

Cadmium (Cd) contamination seriously threatens the soil health and food safety. Combination of amendment and accumulator plant is a green and effective technique to improve phytoremediation of Cd-contaminated alkaline soil. In this study, a potting experiment was conducted to investigate the effect of sulfur on Cd phytoextraction by Cichorium intybus (chicory). Soil chemical and microbial properties were determined to reveal the mechanism of sulfur-assisting Cd phytoremediation by chicory. Soil pH decreased from 7.77 to the lowest 7.30 with sulfur addition (0.6, 0.9 and 1.2 g kg-1, LS, MS and HS treatment); Electric conductivity, sulfate anion and available cadmium concentration increased gradually with increasing sulfur doses. Cd concentration of shoot and root significantly increased from 1.47 to 4.43 mg kg-1, 6.15 to 20.16 mg kg-1 by sulfur treatment relative to CK, which were attributed to increased available Cd concentration induced by decreased pH. Sulfur treatments significantly increased the Cd bioconcentration factor by 64.1%, 118.6%, 201.0% for shoot, 76.3%, 145.6% and 227.7% for root under LS, MS and HS relative to CK treatment, respectively (P < 0.05). However, only MS treatment significantly improved the Cd removal efficiency by 82.9% in comparison of CK treatment (P < 0.05). Microbial community diversity measured by 16SrRNA showed that Thiobacillus and Actinobacteria were the key and dominant strains of soil microbial communities after sulfur addition, which played a pivotal role in the process of sulfur oxidation involved in decrease of soil pH and the transformation of Cd forms. Correlation analysis and path analysis by structural equation model indicated that soil sulfate anion and Thiobacillus directly affected Cd removal efficiency by chicory in Cd-contaminated alkaline soil. This suggests that combination of sulfur and chicory may provide a way to promote Cd bioaccumulation for phytoremediation of Cd-contaminated alkaline soil.


Asunto(s)
Cichorium intybus , Metales Pesados , Microbiota , Contaminantes del Suelo , Thiobacillus , Bioacumulación , Biodegradación Ambiental , Cadmio/análisis , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis , Sulfatos/análisis , Azufre
5.
Zhongguo Zhong Yao Za Zhi ; 34(12): 1489-92, 2009 Jun.
Artículo en Zh | MEDLINE | ID: mdl-19777830

RESUMEN

OBJECTIVE: To study the effect of phosphorus on copper tolerance in Achyranthes bidentata. METHOD: A PVC pipe experiment was conducted to study the interactive effects of phosphorus (P) and copper (Cu), on growth, elemental accumulation and chemical constituents of A. bidentata. Two levels of elemental P were applied at 0 (P0) and 100 ( P100) mg x kg(-1) soil with 5 levels of Cu at 0 (Cu0), 100 (Cu100), 200 (Cu200), 200 (Cu400), 200 (Cu600) mg x kg(-1) soil, respectively. RESULT AND CONCLUSION: The biomass production between different Cu treatments, phosphorus treatment showed significant differences. The biomass reached the maximum value as the concentration of Cu and P was 100 mg x kg(-1). Low concentration of Cu improved the growth of A. bidentata. The growth was blocked as Cu concentration reached 200 mg x kg(-1) in soil, however the contents of oleanolic acid and ecdysterone in roots of A. bidentata had not influenced by Cu. P could improved the copper tolerance in A. bidentata and increased root yield. The Cu concentration in soil of the cultivation bases must be below 200 mg x kg(-1) in order to produce good quality of medicinal material.


Asunto(s)
Achyranthes/metabolismo , Cobre/metabolismo , Fósforo/metabolismo , Contaminantes del Suelo/metabolismo , Achyranthes/crecimiento & desarrollo , Biomasa , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA