RESUMEN
Microplastics (MPs) increase the effective state of heavy metals (HMs) in soil and seriously threaten the yield and quality of peanuts (Arachis Hypogea L.). Kaolinite (KL) has the potential to ameliorate MP- and HM- contaminated soils, but the mechanism of action between them is not well understood. Therefore, 60-day experiments were conducted, where KL (1 %, 2 %) and MPs (0.1 %, 1 %) were individually or jointly mixed into soils with different cadmium (Cd) concentrations (0.5, 2.5, and 5.0 mg·kg-1) to cultivate peanuts in a greenhouse. Finally, soil-bioavailable Cd, peanut dry weight, peanut Cd concentrations, the pH, cation exchange capacity (CEC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were determined. It was shown that MPs negatively affected the peanut dry weight and increased the content of soil-bioavailable Cd and Cd concentration in peanut. In the MP- and Cd-contaminated soils, KL mitigated the negative influence of MPs by increasing the dry weight of peanuts by 8.40 %-40.59 %, decreasing the soil-bioavailable Cd by 23.70-35.74 %, and significantly decreasing peanut Cd concentrations by 9.65-30.86 %. The presence of MPs decreased soil pH (7.69-7.87) and the CEC (20.96-23.95 cmol·L-1) and increased the soil DOC (1.84-2.26 mg·kg-1). KL significantly increased soil pH (7.79-8.03) and the CEC (24.96-28.28 cmol·L-1) and mitigated the adverse influence of MPs on the pH and CEC of Cd-contaminated soils. A regression path analysis (RPA) evidenced that KL decreased Cd accumulation in plants by changing the properties of soil contaminated with MPs and Cd. The research results revealed the mechanism of KL on peanut growth and Cd absorption in MP- and Cd-contaminated soil. The results of this study provide a foundation to improve the quality of MP- and HM-contaminated soils and realize safe peanut production.
Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Arachis/química , Suelo/química , Microplásticos , Plásticos , Caolín , Contaminantes del Suelo/análisisRESUMEN
Orchids are among the most precious flowers in the world. Regulation of flowering time is one of the most important targets to enhance their ornamental value. The beauty of Arundina graminifolia is its year-round flowering, although the molecular mechanism of this flowering ability remains masked. Therefore, we performed a comprehensive assessment to integrate transcriptome and miRNA sequencing to disentangle the genetic regulation of flowering in this valuable species. Clustering analyses provided a set of molecular regulators of floral transition and floral morphogenesis. We mined candidate floral homeotic genes, including FCA, FPA, GI, FT, FLC, AP2, SOC1, SVP, GI, TCP, and CO, which were targeted by a variety of miRNAs. MiR11091 targeted the highest number of genes, including candidate regulators of phase transition and hormonal control. The conserved miR156-miR172 pathway of floral time regulation was evident in our data, and we found important targets of these miRNAs in the transcriptome. Moreover, endogenous hormone levels were determined to decipher the hormonal control of floral buds in A. graminifolia. The qRT-PCR analysis of floral and hormonal integrators validated the transcriptome expression. Therefore, miRNA-mediated mining of candidate genes with hormonal regulation forms the basis for comprehending the complex regulatory network of perpetual flowering in precious orchids. The findings of this study can do a great deal to broaden the breeding programs for flowering time manipulation of orchids.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Fitomejoramiento , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
The orchid is one of the most distinctive and highly valued flowering plants. Nevertheless, the CONSTANS-like (COL) gene family plays significant roles in the control of flowering, and its functions in Orchidaceae have been minimally explored. This research identified 68 potential COL genes within seven orchids' complete genome, divided into three groups (groups I, II, and III) via a phylogenetic tree. The modeled three-dimensional structure and the conserved domains exhibited a high degree of similarity among the orchid COL proteins. The selection pressure analysis showed that all orchid COLs suffered a strong purifying selection. Furthermore, the orchid COL genes exhibited functional and structural heterogeneity in terms of collinearity, gene structure, cis-acting elements within their promoters, and expression patterns. Moreover, we identified 50 genes in orchids with a homology to those involved in the COL transcriptional regulatory network in Arabidopsis. Additionally, the first overexpression of CsiCOL05 and CsiCOL09 in Cymbidium sinense protoplasts suggests that they may antagonize the regulation of flowering time and gynostemium development. Our study will undoubtedly provide new resources, ideas, and values for the modern breeding of orchids and other plants.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Orchidaceae , Filogenia , Fitomejoramiento , Arabidopsis/genética , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/genéticaRESUMEN
BACKGROUND: Manipulation of flowering time and frequency of blooming is key to enhancing the ornamental value of orchids. Arundina graminifolia is a unique orchid that flowers year round, although the molecular basis of this flowering pattern remains poorly understood. RESULTS: We compared the A. graminifolia transcriptome across tissue types and floral developmental stages to elucidate important genetic regulators of flowering and hormones. Clustering analyses identified modules specific to floral transition and floral morphogenesis, providing a set of candidate regulators for the floral initiation and timing. Among candidate floral homeotic genes, the expression of two FT genes was positively correlated with flower development. Assessment of the endogenous hormone levels and qRT-PCR analysis of 32 pathway-responsive genes supported a role for the regulatory networks in floral bud control in A. graminifolia. Moreover, WGCNA showed that flowering control can be delineated by modules of coexpressed genes; especially, MEgreen presented group of genes specific to flowering. CONCLUSIONS: Candidate gene selection coupled with hormonal regulators brings a robust source to understand the intricate molecular regulation of flowering in precious orchids.
Asunto(s)
Flores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes , Orchidaceae/genética , Transducción de Señal , Transcriptoma , Relojes Circadianos/genética , Análisis por Conglomerados , Flores/crecimiento & desarrollo , Flores/fisiología , Flores/ultraestructura , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Anotación de Secuencia Molecular , Orchidaceae/crecimiento & desarrollo , Orchidaceae/fisiología , Orchidaceae/ultraestructura , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , ReproducciónRESUMEN
The Orchidaceae is of economic and ecological importance and constitutes Ë10% of all seed plant species. Here, we report a genome physical map for Cymbidium sinense, a well-known species belonging to genus Cymbidium that has thousands of natural variation varieties of flower organs, flower and leaf colours and also referred as the King of Fragrance, which make it arose into a unique cultural symbol in China. The high-quality chromosome-scale genome assembly was 3.52 Gb in size, 29 638 protein-coding genes were predicted, and evidence for whole-genome duplication shared with other orchids was provided. Marked amplification of cytochrome- and photosystem-related genes was observed, which was consistent with the shade tolerance and dark green leaves of C. sinense. Extensive duplication of MADS-box genes, and the resulting subfunctional and expressional differentiation, was associated with regulation of species-specific flower traits, including wild-type and mutant-type floral patterning, seasonal flowering and ecological adaption. CsSEP4 was originally found to positively regulate gynostemium development. The CsSVP genes and their interaction proteins CsAP1 and CsSOC1 were significantly expanded and involved in the regulation of low-temperature-dependent flowering. Important genetic clues to the colourful leaf traits, purple-black flowers and volatile trait in C. sinense were also found. The results provide new insights into the molecular mechanisms of important phenotypic traits of Cymbidium and its evolution and serve as a powerful platform for future evolutionary studies and molecular breeding of orchids.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Orchidaceae , Flores , Orchidaceae/genética , Hojas de la Planta/genética , Especificidad de la EspecieRESUMEN
Orchids take years to reach flowering, but the unique bamboo orchid (Arundina graminifolia) achieves reproductive maturity in six months and then keeps on year round flowering. Therefore, studying different aspects of its growth, development and flowering is key to boost breeding programs for orchids. This study uses transcriptome tools to discuss genetic regulation in five stages of flower development and four tissue types. Stage specificity was focused to distinguish genes specifically expressed in different stages of flower development and tissue types. The top 10 highly expressed genes suggested unique regulatory patterns for each stage or tissue. The A. graminifolia sequences were blasted in Arabidopsis genome to validate stage specific genes and to predict important hormonal and cell regulators. Moreover, weighted gene co-expression network analysis (WGCNA) modules were ascertained to suggest highly influential hubs for early and late stages of flower development, leaf and root. Hormonal regulators were abundant in all data sets, such as auxin (LAX2, GH3.1 and SAUR41), cytokinin (LOG1), gibberellin (GASA3 and YAB4), abscisic acid (DPBF3) and sucrose (SWEET4 and SWEET13). Findings of this study, thus, give a fine sketch of genetic variability in Orchidaceae and broaden our understanding of orchid flower development and the involvement of multiple pathways.
Asunto(s)
Orchidaceae/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Análisis por Conglomerados , Citocininas/genética , Citocininas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Redes Reguladoras de Genes/genética , Giberelinas/metabolismo , Orchidaceae/genética , Orchidaceae/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/genética , Análisis de Componente Principal , TranscriptomaRESUMEN
The plant nonexpressor of pathogenesis-related 1 (NPR1) and pathogenesis-associated 1 (PR1) genes play fundamental roles in plant immunity response, as well as abiotic-stress tolerance. Nevertheless, comprehensive identification and characterization of NPR1 and PR1 homologs has not been conducted to date in Cymbidium orchids, a valuable industrial crop cultivated as ornamental and medicinal plants worldwide. Herein, three NPR1-like (referred to as CsNPR1-1, CsNPR1-2, and CsNPR1-3) and two PR1-like (CsPR1-1 and CsPR1-2) genes were genome-widely identified from Cymbidium orchids. Sequence and phylogenetic analysis revealed that CsNPR1-1 and CsNPR1-2 were grouped closest to NPR1 homologs in Zea mays (sharing 81.98% identity) and Phalaenopsis (64.14%), while CsNPR1-3 was classified into a distinct group with Oryza sativa NPR 3 (57.72%). CsPR1-1 and CsPR1-2 were both grouped closest to Phalaenopsis PR1 and other monocot plants. Expression profiling showed that CsNPR1 and CsPR1 were highly expressed in stem/pseudobulb and/or flower. Salicylic acid (SA) and hydrogen peroxide (H2O2) significantly up-regulated expressions of CsNPR1-2, CsPR1-1 and CsPR1-2, while CsNPR1-3, CsPR1-1 and CsPR1-2 were significantly up-regulated by abscisic acid (ABA) or salinity (NaCl) stress. In vitro transcripts of entire Cymbidium mosaic virus (CymMV) genomic RNA were successfully transfected into Cymbidium protoplasts, and the CymMV infection up-regulated the expression of CsNPR1-2, CsPR1-1 and CsPR1-2. Additionally, these genes were transiently expressed in Cymbidium protoplasts for subcellular localization analysis, and the presence of SA led to the nuclear translocation of the CsNPR1-2 protein, and the transient expression of CsNPR1-2 greatly enhanced the expression of CsPR1-1 and CsPR1-2. Collectively, the CsNPR1-2-mediated signaling pathway is SA-dependent, and confers to the defense against CymMV infection in Cymbidium orchids.
Asunto(s)
Ácido Abscísico/farmacología , Orchidaceae/genética , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Estrés Salino , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/farmacología , Virus del Mosaico/patogenicidad , Orchidaceae/efectos de los fármacos , Orchidaceae/virología , Proteínas de Plantas/metabolismo , Salicilatos/farmacología , Homología de Secuencia , TranscriptomaRESUMEN
Protoplast systems have been proven powerful tools in modern plant biology. However, successful preparation of abundant viable protoplasts remains a challenge for Cymbidium orchids. Herein, we established an efficient protoplast isolation protocol from orchid petals through optimization of enzymatic conditions. It requires optimal D-mannitol concentration (0.5 M), enzyme concentration (1.2 % (w/v) cellulose and 0.6 % (w/v) macerozyme) and digestion time (6 h). With this protocol, the highest yield (3.50 × 107/g fresh weight of orchid tissue) and viability (94.21%) of protoplasts were obtained from flower petals of Cymbidium. In addition, we achieved high transfection efficiency (80%) through the optimization of factors affecting polyethylene glycol (PEG)-mediated protoplast transfection including incubation time, final PEG4000 concentration and plasmid DNA amount. This highly efficient protoplast-based transient expression system (PTES) was further used for protein subcellular localization, bimolecular fluorescence complementation (BiFC) assay and gene regulation studies of flowering related genes in Cymbidium orchids. Taken together, our protoplast isolation and transfection protocol is highly efficient, stable and time-saving. It can be used for gene function and molecular analyses in orchids and other economically important monocot crops.
Asunto(s)
Orchidaceae/metabolismo , Protoplastos/metabolismo , Separación Celular , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Orchidaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión ProteicaRESUMEN
The colorful leaf is an important ornamental character of Cymbidium sinense (C. sinense), especially the red leaf, which has always been attracted by breeders and consumers. However, little is documented on the formation mechanism of the red leaf of C. sinense. In this study, the changing patterns of flavonoid-related metabolites, corresponding enzyme activities and genes expression in the leaves of C. sinense 'Red Sun' from red to yellow and finally to green was investigated. A total of 196 flavonoid-related metabolites including 11 anthocyanins metabolites were identified using UPLC-MS/MS-based approach. In the process of leaf color change, 42 metabolites were identified as having significantly different contents and the content of 28 differential metabolites turned to zero. In anthocyanin biosynthetic pathway, content of all 15 identified metabolites showed downregulation trend in the process of leaf color change. Among the 15 metabolites, the contents of Naringenin chalcone, Pelargonidin O-acetylhexoside and Anthocyanin 3-O-beta-d-glucoside decreased to zero in the green leaf stage. The changing pattern of enzyme activity of 10 enzymes involved in the anthocyanin biosynthetic pathway showed different trends from red leaves that have turned yellow and finally green, while the expression of genes encoding these enzymes was all down-regulated in the process of leaf color change. The results of this study revealed the types of flavonoid-related metabolites and the comprehensive analysis of metabolites content, enzyme activities and genes expression providing a new reference for breeders to improve the leaf color of C. sinense 'Red Sun'.
Asunto(s)
Vías Biosintéticas/fisiología , Flavonoides/biosíntesis , Orchidaceae/metabolismo , Orchidaceae/fisiología , Hojas de la Planta/metabolismo , Cromatografía Liquida/métodos , Color , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/genética , Metabolómica/métodos , Anotación de Secuencia Molecular/métodos , Orchidaceae/genética , Pigmentación/fisiología , Proteínas de Plantas/metabolismo , Espectrometría de Masas en Tándem/métodos , Transcriptoma/genéticaRESUMEN
BACKGROUND: Cymbidium goeringii is one of the most horticulturally important and popular ornamental plants in the orchid family (Orchidaceae). It blooms in winter during January-March and a period of low temperature is necessary for its normal flowering, otherwise there is flower bud abortion, which seriously affects the economic benefits. However, the molecular mechanism underlying winter-blooming behavior in C. goeringii is unclear. RESULTS: In this research, we firstly study the flowering physiology of C. goeringii by cytobiology observations and physiological experiments. Using comparative transcriptome analysis, we identified 582 differentially expressed unigenes responding to cold treatment that were involved in metabolic process, flowering time, hormone signaling, stress response, and cell cycle, implying their potential roles in regulating winter-blooming of C. goeringii. Twelve MADS-box genes among them were investigated by full-length cDNA sequence analysis and expression validation, which indicated that three genes within the SHORT VEGETATIVE PHASE (SVP) sub-group had the most significant repressed expression after cold treatment. Further analysis revealed that the SVP genes showed population variation in expression that correlated with cold-regulated flowering and responded to low temperature earlier than the flowering pathway integrators CgAP1, CgSOC1, and CgLFY, suggesting a potential role of CgSVP genes in the early stage of low-temperature-induced blooming of C. goeringii. Moreover, a yeast two-hybrid experiment confirmed that CgSVP proteins interacted with CgAP1 and CgSOC1, suggesting that they may synergistically control the process of C. goeringii flowering in winter. CONCLUSIONS: This study represents the first exploration of flowering physiology of C. goeringii and provides gene expression information that could facilitate our understanding of molecular regulation of orchid plant winter-flowering, which could provide new insights and practical guidance for improving their flowering regulation and molecular breeding.
Asunto(s)
Frío , Flores/genética , Flores/fisiología , Genes de Plantas , Orchidaceae/genética , Orchidaceae/fisiología , Transcriptoma/genética , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas , Anotación de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas/genética , Reproducibilidad de los Resultados , Factores de TiempoRESUMEN
Microplastics (MPs) are emerging persistent pollutants, and heavy metals are typical environmental pollutants, with their coexistence potentially compounding pollution and ecological risks. However, the interactive impacts and the relevant mechanisms of heavy metal and different types of MPs in plant-soil systems are still unclear. This study investigated the differential impacts of polyethylene MPs (PE MPs) and biodegradable polybutylene adipate MPs (PBAT MPs) on chromium (Cr) uptake in peanuts, focusing on plant performance and rhizosphere soil microenvironment. Compared with nondegradable PE-MPs, biodegradable PBAT MPs produced less significant influences on plant phytotoxicity, soil Cr bioavailability, and soil properties such as pH, CEC, DOC, and MBC, with the exception of MBN in Cr-contaminated soils. Compared to the control, soil pH and cation exchange capacity (CEC) decreased by MPs, while soil-soluble carbon (DOC), microbial biomass carbon, and nitrogen (MBC and MBN) increased by MPs. Compared to the control, soil-bioavailable Cr increased by 11.8-177.8% under PE MPs treatments, while increased by 5.1-156.9% under PBAT MPs treatments. The highest Cr content in shoots and roots was observed at 500.0 mg·kg-1 Cr level, which increased by 53.1% and 79.2% under 5% PE MPs treatments, respectively, as well as increased by 38.3% and 60.4% under 5% PBAT MPs treatments, respectively, compared with the control. The regression path analysis indicated that pH, MBC, MBN, and soil-bioavailable Cr played a vital role in the changes of soil properties and Cr uptake by peanuts induced by MPs. Soil bacterial community analysis revealed that Nocardioides, Proteobacteria, and Sphingomonas were reduced by the inhibition of MPs, which affected Cr uptake by peanuts. These results indicated that the peanut soil microenvironment was affected by PBAT and PE MPs, altering the Cr bioavailability and plant Cr uptake in Cr-contaminated soil.
Asunto(s)
Arachis , Cromo , Microplásticos , Polietileno , Contaminantes del Suelo , Suelo , Suelo/química , Microbiología del Suelo , Biodegradación AmbientalRESUMEN
The Chinese orchids symbolise nobility and gentility in China, and the variation of leaf color makes Cymbidium sinense more diversified and valuable. However, its color variations especially at the protein level still remain largely unexplored. In this study, the proteomics and phosphoproteomics of Cymbidium sinense leaf color variation mutants were studied. A total of 1059 differentially abundant proteins (DAPs) and 1127 differentially abundant phosphorylation sites belonging to 644 phosphoproteins (DAPPs) were identified in the yellow section of leaf variegation mutant of Cymbidium sinense (MY) compared with the green section (MG). Moreover, 349 co-expressing proteins were found in both omics' datasets, while only 26 proteins showed the same expression patterns in the two omics. The interaction network analysis of kinases and phosphatases showed that DAPs and DAPPs in photosynthesis, response to hormones, pigment metabolic process, phosphorylation, glucose metabolic process, and dephosphorylation might contribute to leaf color variation. The abundance of 28 Hsps and 28 phosphorylation sites belonging to 10 Hsps showed significant differences between MG and MY. CsHsp70 was selected to explore the function in Cymbidium sinense leaf variegation. The results showed CsHsp70 is essential for maintaining photosynthetic pigment content and the 399S phosphorylation site is crucial to the function of CsHsp70. Collectively, our findings construct a comprehensive coverage of protein and protein phosphorylation in leaf variegation of C. sinense, providing valuable insights into its formation mechanisms.
Asunto(s)
Clorofila , Orchidaceae , Proteínas de Plantas , Orchidaceae/metabolismo , Orchidaceae/genética , Clorofila/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , ProteómicaRESUMEN
The seasonal flowering Chinese Cymbidium produce an axillary floral meristem and require a dormancy period during cold conditions for flower development. However, the bud activation mechanism remains elusive. This study evaluates the multi-omics across six stages of flower development, along with functional analysis of core genes to decipher the innate mechanism of floral bud initiation and outgrowth in the Chinese orchid Cymbidium sinense. Transcriptome and proteome analyses identified 10 modules with essential roles in floral bud dormancy and activation. Gene clusters in the early stages of flower development were mainly related to flowering time regulation and meristem determination, while the late stages were correlated with hormone signaling pathways. The metabolome identified 69 potential hormones in which gibberellin (GA) and abscisic acid (ABA) were the main regulatory hubs, and GA4 and GA53 exhibited a reciprocal loop. Extraneous GA application caused rapid elongation of flower buds and promoted the expression of flower development genes. Contrarily, exogenous ABA application extended the dormancy process and ABA inhibitors induced dormancy release. Moreover, CsAPETALA1 (CsAP1) was identified as the potential target of ABA for floral bud activation. Transformation of CsAP1 in Arabidopsis and its transient overexpression in C. sinense protoplasts not only affected flowering time and floral organ morphogenesis in Arabidopsis but also orchestrated the expression of flowering and hormone regulatory genes. The presence of ABA response elements in the CsAP1 promoter, rapid downregulation of CsAP1 after exogenous ABA application, and the activation of the floral bud after ABA inhibitor treatment suggest that ABA can control bud outgrowth through CsAP1.
RESUMEN
The orchid, the champagne of flowers, brings luxury, elegance, and novelty to nature. Cymbidium sinense is a symbol of gigantic floral variability on account of wavering shapes and sizes of floral organs, although marker-trait association (MTA) has not been studied for its floral traits. We evaluated markers associated with 14 floral traits of C. sinense through a genome-wide association study (GWAS) of 195 accessions. A total of 65 318 522 single-nucleotide polymorphisms (SNPs) and 3 906 176 insertion/deletion (InDel) events were identified through genotyping-by-sequencing. Among these, 4694 potential SNPs and 477 InDels were identified as MTAs at -log10 P > 5. The genes related to these SNPs and InDels were largely associated with floral regulators, hormonal pathways, cell division, and metabolism, playing essential roles in tailoring floral morphology. Moreover, 20 candidate SNPs/InDels linked to 11 genes were verified, 8 of which were situated on exons, one was located in the 5'-UTR and two were positioned in introns. Here, the multitepal trait-related gene RABBIT EARS (RBE) was found to be the most crucial gene. We analyzed the role of CsRBE in the regulation of flower-related genes via efficient transient overexpression in C. sinense protoplasts, and found that the floral homeotic genes CsAP3 and CsPI, as well as organ boundary regulators, including CsCUC and CsTCP genes, were regulated by CsRBE. Thus, we obtained key gene loci for important ornamental traits of orchids using genome-wide association analysis of populations with natural variation. The findings of this study can do a great deal to expedite orchid breeding programs for shape variability.
RESUMEN
Cymbidium sinense is one of the most important traditional Chinese Orchids due to its unique and highly ornamental floral organs. Although the ABCDE model for flower development is well-established in model plant species, the precise roles of these genes in C. sinense are not yet fully understood. In this study, four SEPALLATA-like genes were isolated and identified from C. sinense. CsSEP1 and CsSEP3 were grouped into the AGL9 clade, while CsSEP2 and CsSEP4 were included in the AGL2/3/4 clade. The expression pattern of CsSEP genes showed that they were significantly accumulated in reproductive tissues and expressed during flower bud development but only mildly detected or even undetected in vegetative organs. Subcellular localization revealed that CsSEP1 and CsSEP4 were localized to the nucleus, while CsSEP2 and CsSEP3 were located at the nuclear membrane. Promoter sequence analysis predicted that CsSEP genes contained a number of hormone response elements (HREs) and MADS-box binding sites. The early flowering phenotype observed in transgenic Arabidopsis plants expressing four CsSEP genes, along with the expression profiles of endogenous genes, such as SOC1, LFY, AG, FT, SEP3 and TCPs, in both transgenic Arabidopsis and C. sinense protoplasts, suggested that the CsSEP genes played a regulatory role in the flowering transition by influencing downstream genes related to flowering. However, only transgenic plants overexpressing CsSEP3 and CsSEP4 caused abnormal phenotypes of floral organs, while CsSEP1 and CsSEP2 had no effect on floral organs. Protein-protein interaction assays indicated that CsSEPs formed a protein complex with B-class CsAP3-2 and CsSOC1 proteins, affecting downstream genes to regulate floral organs and flowering time. Our findings highlighted both the functional conservation and divergence of SEPALLATA-like genes in C. sinense floral development. These results provided a valuable foundation for future studies of the molecular network underlying floral development in C. sinense.
RESUMEN
Transcription factors (TFs) of the WRKY family play pivotal roles in defense responses and secondary metabolism of plants. Although WRKY TFs are well documented in numerous plant species, no study has performed a genome-wide investigation of the WRKY gene family in Cymbidium sinense. In the present work, we found 64 C. sinense WRKY (CsWRKY) TFs, and they were further divided into eight subgroups. Chromosomal distribution of CsWRKYs revealed that the majority of these genes were localized on 16 chromosomes, especially on Chromosome 2. Syntenic analysis implied that 13 (20.31%) genes were derived from segmental duplication events, and 17 orthologous gene pairs were identified between Arabidopsis thaliana WRKY (AtWRKY) and CsWRKY genes. Moreover, 55 of the 64 CsWRKYs were detectable in different plant tissues in response to exposure to plant hormones. Among them, Group III members were strongly induced in response to various hormone treatments, indicating their potential essential roles in hormone signaling. We subsequently analyzed the function of CsWRKY18 in Group III. The CsWRKY18 was localized in the nucleus. The constitutive expression of CsWRKY18 in Arabidopsis led to enhanced sensitivity to ABA-mediated seed germination and root growth and elevated plant tolerance to abiotic stress within the ABA-dependent pathway. Overall, our study represented the first genome-wide characterization and functional analysis of WRKY TFs in C. sinense, which could provide useful clues about the evolution and functional description of CsWRKY genes.
RESUMEN
Flowering in orchids is the most important horticultural trait regulated by multiple mechanisms. Arundina graminifolia flowers throughout the year unlike other orchids with a narrow flowering span. However, little is known of the genetic regulation of this peculiar flowering pattern. This study identifies a number of transcription factor (TF) families in five stages of flower development and four tissue types through RNA-seq transcriptome. About 700 DEGs were annotated to the transcription factor category and classified into 35 TF families, which were involved in multiple signaling pathways. The most abundant TF family was bHLH, followed by MYB and WRKY. Some important members of the bHLH, WRKY, MYB, TCP, and MADS-box families were found to regulate the flowering genes at transcriptional levels. Particularly, the TFs WRKY34 and ERF12 possibly respond to vernalization and photoperiod signaling, MYB108, RR9, VP1, and bHLH49 regulate hormonal balance, and CCA1 may control the circadian pathway. MADS-box TFs including MADS6, 14, 16, AGL5, and SEP may be important regulators of flowering in A. graminifolia. Therefore, this study provides a theoretical basis for understanding the molecular mechanism of flowering in A. graminifolia.
Asunto(s)
Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Orchidaceae/metabolismo , Proteínas de Plantas/biosíntesis , RNA-Seq , Transcripción Genética , Flores/genética , Orchidaceae/genética , Proteínas de Plantas/genéticaRESUMEN
Orchids are some of the most popular ornamental plants worldwide. Orchid floral morphology has increasingly attracted horticultural and commercial attention. Although multiple genes have been shown to be involved in the formation of the orchid flower, the underlying multi-level regulatory networks are largely unknown. In this study, we analyzed the ontogeny of flower development in Cymbidium ensifolium, a traditional orchid in the tropical and subtropical regions of Asia, by performing deep sequencing of the transcriptome of individual flower organs to discover organ-specific genes potentially involved in their growth. We identified 3,017 differentially-expressed genes (DEGs) during the development of various flower organs, and observed over-representation of GROWTH-REGULATING FACTORS (GRFs) specific to flower column (gynostemium). Eleven C. ensifolium GRFs (CeGRFs) from our transcriptome data clustered into five phylogenetic subgroups. Ten of these GRFs shared a region complementary to C. ensifolium microRNA396 (Ce-miR396), and degradome sequencing confirmed the cleavage of transcripts derived from seven CeGRFs. We cloned Ce-miR396 and used a protoplast-based transient expression system to overexpress it in Cymbidium protoplasts. We observed a significant decrease in the transcripts of several CeGRFs in flowers and leaves, indicating a potential role for miR396-GRF module in organ development through the cleavage of distinct CeGRFs. Temporal and spatial expression analysis indicated that most CeGRF transcripts accumulated in flower buds and column tissues, where Ce-miR396 expression was the lowest. Expression dynamics in wild type and floral-defective mutants further confirmed a strong correlation between Ce-miR396, CeGRFs, and flower organ development and column specification. Moreover, overexpression of Ce-miR396 in Nicotiana tabacum resulted in curved pistils and reduced fertility, implying that the conserved role of Ce-miR396 in floral development. These results provide tools to better understand the biological roles of GRFs in orchid development, and open new avenues for the diversification of orchid floral patterns.
RESUMEN
Versatile protoplast platforms greatly facilitate the development of modern botany. However, efficient protoplast-based systems are still challenging for numerous horticultural plants and crops. Orchids are globally cultivated ornamental and medicinal monocot plants, but few efficient protoplast isolation and transient expression systems have been developed. In this study, we established a highly efficient orchid protoplast isolation protocol by selecting suitable source materials and optimizing the enzymatic conditions, which required optimal D-mannitol concentrations (0.4-0.6 M) combined with optimal 1.2% cellulose and 0.6% macerozyme, 5 µM of 2-mercaptoethanol and 6 h digestion. Tissue- and organ-specific protoplasts were successfully isolated from young leaves [â¼3.22 × 106/g fresh weight (FW)], flower pedicels (â¼5.26 × 106/g FW), and young root tips (â¼7.66 × 105/g FW) of Cymbidium orchids. This protocol recommends the leaf base tissues (the tender part of young leaves attached to the stem) as better source materials. High yielding viable protoplasts were isolated from the leaf base of Cymbidium (â¼2.50 × 107/g FW), Phalaenopsis (1.83 × 107/g FW), Paphiopedilum (1.10 × 107/g FW), Dendrobium (8.21 × 106/g FW), Arundina (3.78 × 106/g FW) orchids, and other economically important monocot crops including maize (Zea mays) (3.25 × 107/g FW) and rice (Oryza sativa) (4.31 × 107/g FW), which showed marked advantages over previous mesophyll protoplast isolation protocols. Leaf base protoplasts of Cymbidium orchids were used for polyethylene glycol (PEG)-mediated transfection, and a transfection efficiency of more than 80% was achieved. This leaf base protoplast system was applied successfully to analyze the CsDELLA-mediated gibberellin signaling in Cymbidium orchids. We investigated the subcellular localization of the CsDELLA-green fluorescent protein fusion and analyzed the role of CsDELLA in the regulation of gibberellin to flowering-related genes via efficient transient overexpression and gene silencing of CsDELLA in Cymbidium protoplasts. This protoplast isolation and transient expression system is the most efficient based on the documented results to date. It can be widely used for cellular and molecular studies in orchids and other economically important monocot crops, especially for those lacking an efficient genetic transformation system in vivo.
RESUMEN
The floral morphology of Cymbidium ensifolium, a well-known orchid in China, has increasingly attracted horticultural and commercial attention. However, the molecular mechanisms that regulate flower development defects in C. ensifolium mutants are poorly understood. In this work, we examined a domesticated variety of C. ensifolium named 'CuiYuMuDan', or leaf-like flower mutant, which lacks typical characteristics of orchid floral organs but continues to produce sepal-to leaf-like structures along the inflorescence. We used comparative transcriptome analysis to identify 6234 genes that are differentially expressed between mutant and wild-type flowers. The majority of these differentially expressed genes are involved in membrane-building, anabolism regulation, and plant hormone signal transduction, implying that in the leaf-like mutant these processes play roles in the development of flower defects. In addition, we identified 152 differentially expressed transcription factors, including the bHLH, MYB, MIKC, and WRKY gene families. Moreover, we found 20 differentially expressed genes that are commonly involved in flower development, including MADS-box genes, CLAVATA3 (CLV3), WUSCHEL (WUS), and PERIANTHIA (PAN). Among them, floral homeotic genes were further investigated by phylogenetic analysis and expression validation, which displayed distinctive spatial expression patterns and significant changes between the wild type and the mutant. This is the first report on the C. ensifolium leaf-like flower mutant transcriptome. Our results shed light on the molecular regulation of orchid flower development, and may improve our understanding of floral patterning regulation and advance molecular breeding of Chinese orchids.