RESUMEN
Because of the half-filled t_{2g}-electron configuration, the BO_{6} octahedral distortion in a 3d^{3} perovskite system is usually very limited. In this Letter, a perovskitelike oxide Hg_{0.75}Pb_{0.25}MnO_{3} (HPMO) with a 3d^{3} Mn^{4+} state was synthesized by using high pressure and high temperature methods. This compound exhibits an unusually large octahedral distortion enhanced by approximately 2 orders of magnitude compared with that observed in other 3d^{3} perovskite systems like RCr^{3+}O_{3} (R=rare earth). Essentially different from centrosymmetric HgMnO_{3} and PbMnO_{3}, the A-site doped HPMO presents a polar crystal structure with the space group Ama2 and a substantial spontaneous electric polarization (26.5 µC/cm^{2} in theory) arising from the off-center displacements of A- and B-site ions. More interestingly, a prominent net photocurrent and switchable photovoltaic effect with a sustainable photoresponse were observed in the current polycrystalline HPMO. This Letter provides an exceptional d^{3} material system which shows unusually large octahedral distortion and displacement-type ferroelectricity violating the "d^{0}-ness" rule.
RESUMEN
The successful synthesis of superconducting infinite-layer nickelate thin films with the highest Tc ≈ 15 K has ignited great enthusiasm for this material class as potential analogs of the high-Tc cuprates. Pursuing a higher Tc is always an imperative task in studying a new superconducting material system. Here we report high-quality Pr0.82Sr0.18NiO2 thin films with Tconset ≈ 17 K synthesized by carefully tuning the amount of CaH2 in the topotactic chemical reduction and the effect of pressure on its superconducting properties by measuring electrical resistivity under various pressures in a cubic anvil cell apparatus. We find that the onset temperature of the superconductivity, Tconset, can be enhanced monotonically from ~17 K at ambient pressure to ~31 K at 12.1 GPa without showing signatures of saturation upon increasing pressure. This encouraging result indicates that the Tc of infinite-layer nickelates superconductors still has room to go higher and it can be further boosted by applying higher pressures or strain engineering in the heterostructure films.
RESUMEN
Surface plasmon polaritons enable light concentration within subwavelength regions, opening thereby new avenues for miniaturizing the device and strengthening light-matter interactions. Here we realize efficient electro-optic modulation in low-loss plasmonic waveguides with the aid of graphene, and the devices are fully integrated in the silicon-on-insulator platform. By advantageously exploiting low-loss plasmonic slot-waveguide modes, which weakly leak into a substrate while featuring strong fields within the two-layer-graphene covered slots in metals, we successfully achieve a tunability of 0.13 dB µm-1 for our fabricated graphene-plasmonic waveguide devices with extremely low insertion loss, which outperforms previously reported graphene-plasmonic devices. Our results highlight the potential of graphene plasmonic leaky-mode hybrid waveguides to realize active ultra-compact devices for optoelectronic applications.
RESUMEN
Based on the requirements for studying the dynamic process of proteinase action substrates in life science, we selected six random proteins including 1L-10, SCGB2A2, CENPQ, GST, HK1, KLHL7, as well as five different concentrations of 1L-10 proteins of 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, and 0.0625 mg/ml, and fabricated two types of substrate protein microarrays, respectively. We detected the dynamic processes of proteins degraded by proteinase K using oblique-incidence reflectivity difference (OIRD) method in a label-free and real-time manner. We obtained the relevant degradation velocities and the degradation time. The experimental results demonstrate that OIRD has the ability to study proteinase action substrates which is out of reach of label methods and is expected to offer opportunities to determine protease-substrate relationships on the systems biology level.
Asunto(s)
Nervio Facial/cirugía , Parálisis Facial/cirugía , Adolescente , Adulto , Anciano , Niño , Parálisis Facial/etiología , Parálisis Facial/rehabilitación , Femenino , Humanos , Masculino , Métodos , Persona de Mediana Edad , Nervios Periféricos/trasplante , Fracturas Craneales/complicacionesRESUMEN
High-sensitivity and visible-blind ultraviolet (UV) photoconductive detectors based on SrTiO(3) single crystal with interdigitated electrodes are reported. The responsivities of photovoltage and photocurrent can reach 2.13x10(5) V/W and 213 mA/W, respectively, at 330 nm at ambient temperature, and the corresponding quantum efficiency eta reaches 80.2%. The dark current is lower than 50 pA at 10 V bias, and the UV/visible contrast ratio is about four orders of magnitude with a sharp cutoff at 390 nm. The experimental results demonstrate that SrTiO(3) single crystal has potentially wide applications in UV detection.