Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 38(4): 685-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25124181

RESUMEN

The rapid induction of photosynthesis is critical for plants under light-fleck environment. Most previous studies about photosynthetic induction focused upon single leaf, but they did not consider the systemic integrity of plant. Here, we verified whether systemic signalling is involved in photosynthetic induction. Rumex K-1 (Rumex patientia × Rumex tianschaious) plants were grown under light-fleck condition. After whole night dark adaptation, different numbers of leaves (system leaf or SL) were pre-illuminated with light, and then the photosynthetic induction of other leaves (target leaf or TL) was investigated. This study showed that the pre-illumination of SL promoted photosynthetic induction in TL. This promotion was independent of the number of SL, the light intensity on SL and the distance between SL and TL, indicating that this systemic signalling is non-dose-dependent. More interestingly, the photosynthetic induction was promoted by only the pre-illumination of morphological upper leaf rather than the pre-illumination of morphological lower leaf, indicating that the transfer of this signal is directional. The results showed that the transfer of this systemic signalling depends upon the phloem. This systemic signalling helps plants to use light energy more efficiently under light flecks.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Rumex/fisiología , Transducción de Señal/fisiología , Ciclo del Carbono/fisiología , Luz , Floema/fisiología , Floema/efectos de la radiación , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Rumex/efectos de la radiación , Transducción de Señal/efectos de la radiación
2.
Sci Rep ; 6: 34455, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27686324

RESUMEN

Ultraviolet-B radiation (UV-B) is generally considered to negatively impact the photosynthetic apparatus and plant growth. UV-B damages PSII but does not directly influence PSI. However, PSI and PSII successively drive photosynthetic electron transfer, therefore, the interaction between these systems is unavoidable. So we speculated that UV-B could indirectly affect PSI under chilling-light conditions. To test this hypothesis, the cucumber leaves were illuminated by UV-B prior or during the chilling-light treatment, and the leaves were then transferred to 25 °C and low-light conditions for recovery. The results showed that UV-B decreased the electron transfer to PSI by inactivating the oxygen-evolving complex (OEC), thereby protecting PSI from chilling-light-induced photoinhibition. This effect advantages the recoveries of PSI and CO2 assimilation after chilling-light stress, therefore should minimize the yield loss caused by chilling-light stress. Because sunlight consists of both UV-B and visible light, we suggest that UV-B-induced OEC inactivation is critical for chilling-light-induced PSI photoinhibition in field. Moreover, additional UV-B irradiation is an effective strategy to relieve PSI photoinhibition and yield loss in protected cultivation during winter. This study also demonstrates that minimizing the photoinhibition of PSI rather than that of PSII is essential for the chilling-light tolerance of the plant photosynthetic apparatus.

3.
Sci Rep ; 5: 13094, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26471979

RESUMEN

Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.


Asunto(s)
Adaptación Biológica , Frío , Cucumis sativus/fisiología , Raíces de Plantas , Brotes de la Planta , Agua , Luz , Fotosíntesis , Hojas de la Planta , Plantones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA