Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
iScience ; 27(8): 110492, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148719

RESUMEN

Atmospheric water harvesting has emerged as an efficient strategy for addressing the global challenge of freshwater scarcity. However, the in being energy-consuming water-collecting process has obstructed its practicality. In this work, a soft drain bed, which was composed of hydrophilic cloth and hygroscopic gel, has been demonstrated to capture atmospheric water effectively, followed by converting it into liquid water spontaneously and sustainably, under all-weather humidity conditions. Under the optimal working condition of 30°C with a relative humidity level of 75%, the bed can provide a spontaneous water oozing ability of 1.25 g (liquid water)/hour within the 8 h of working time. More importantly, after 5 working cycles, 80% of the oozing ability can be reserved, suggesting the high potential for practical freshwater supply application. The proposed design strategy is expected to provide new hints for the development of future energy-saving decentralized freshwater supply systems.

2.
Dalton Trans ; 53(5): 2333-2340, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38205731

RESUMEN

Iron(II)-triazole coordination polymers have attracted considerable interest for their synthetic versatility, which allows tuning their spin-crossover (SCO) properties. Embedding SCO solid particles in sponge matrices is a simple, powerful, and generic approach to construct processable SCO materials. Here, we have studied a series of magnetic frameworks based on partial ligand substitution by using different chemical mixtures of two organic ligands, yielding four isostructural coordination polymers. The integration of the hygroscopic SCO material has endowed the composite sponge with the ability to capture moisture under ambient conditions. In particular, not only does a spin-crossover transition during absorption occur, but also a color variation has been achieved by varying humidity. The consequences of cooperativity and the exposed surface of the composite sponge on the spin transition were evaluated and the most promising materials among them were screened. This work provides guiding significance for the fabrication and practical application of spin-crossover-sponge materials.

3.
Small Methods ; 8(8): e2301337, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38135880

RESUMEN

CO2 capture and storage have been regarded as promising concepts to reduce anthropogenic CO2 emissions. However, the high cost, inferior adsorption capacity, and higher effective activation temperature of traditional sorbents limit their practical application in efficient CO2 capture. Here, a C-S-H@ZIF-8 (C-S-Z) sorbent is fabricated by in situ growth of the ZIF-8 shell on the C-S-H (calcium-silicate-hydrate) surface for ultra-high CO2 adsorption and storage. Among the C-S-Z, the outer ZIF-8 shell acts as a transport channel that promotes CO2 absorption toward the underlying C-S-H substrate for accelerated carbonation while preventing nitrogen and water from reaching the interior C-S-H. As a consequence, C-S-Z possesses the merits of ample pyrrolic nitrogen, porous structure, and ultra-high surface area (577.18 m2 g-1), that contribute to an ultra-high CO2 capture capacity, reaching 293.6 mg g-1. DFT calculations show a high CO2 adsorption energy and the mineral carbonation is dominant by the adsorption process. In particular, the advantages of the outstanding adsorption capacity, low cost, and high CO2 selectivity make this C-S-H-based sorbent hold great potential in the practical application for direct air CO2 capture and storage.

4.
ACS Appl Mater Interfaces ; 15(41): 48365-48374, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37793189

RESUMEN

The manipulation of spin-state switching (SSS) under ambient conditions is of significant importance for the construction of molecular switches. Herein, we demonstrate that reversible SSS can be mediated by the aggregation state of a near-infrared (NIR)-sensitive ferrous complex. The ferrous complex was J-aggregated in a DMF suspension and with a low-spin (LS) state; however, with the addition of water, it changed to H-aggregation and reached a high-spin (HS) state, owing to the enhanced intramolecular charge transfer and metal-to-ligand charge transfer. Interestingly, the following NIR irradiation can restore the J-aggregation and LS states owing to the enhanced ligand-to-ligand charge transfer. More interestingly, the ferrous complex can be further incorporated into a hygroscopic sponge that was capable of capturing humidity effectively for all weather conditions, which displayed reversible SSS via alternating atmospheric humidity capture and NIR irradiation under ambient conditions in the sponge state. This study thus opens up a new avenue for the development of novel smart molecular switches at the device level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA