Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 578(7794): 240-245, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051600

RESUMEN

A quantum internet that connects remote quantum processors1,2 should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress3-12, at present the maximal physical separation achieved between two nodes is 1.3 kilometres10, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement13-15 and we use quantum frequency conversion16 to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference17,18 and entanglement over 50 kilometres of coiled fibres via single-photon interference19. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.

2.
Nucleic Acids Res ; 52(6): 3213-3233, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38227555

RESUMEN

N 6-Threonylcarbamoyladenosine at A37 (t6A37) of ANN-decoding transfer RNAs (tRNAs) is a universal modification whose functions have been well documented in bacteria and lower eukaryotes; however, its role in organellar translation is not completely understood. In this study, we deleted the mitochondrial t6A37-modifying enzyme OSGEPL1 in HEK293T cells. OSGEPL1 is dispensable for cell viability. t6A37 hypomodification selectively stimulated N1-methyladenosine at A9 (m1A9) and N2-methylguanosine at G10 (m2G10) modifications and caused a substantial reduction in the aminoacylation of mitochondrial tRNAThr and tRNALys, resulting in impaired translation efficiency. Multiple types of amino acid misincorporation due to the misreading of near-cognate codons by t6A37-unmodified tRNAs were detected, indicating a triggered translational infidelity. Accordingly, the alterations in mitochondrial structure, function, and the activated mitochondrial unfolded protein response were observed. Mitochondrial function was efficiently restored by wild-type, but not by tRNA-binding-defective OSGEPL1. Lastly, in Osgepl1 deletion mice, disruption to mitochondrial translation was evident but resulted in no observable deficiency under physiological conditions in heart, which displays the highest Osgepl1 expression. Taken together, our data delineate the multifaceted roles of mitochondrial t6A37 modification in translation efficiency and quality control in mitochondria.


Asunto(s)
Genes Mitocondriales , Mitocondrias , ARN de Transferencia , Animales , Humanos , Ratones , Células HEK293 , Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo
3.
Plant Biotechnol J ; 22(9): 2395-2409, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38593377

RESUMEN

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Tricotecenos , Triticum , Triticum/microbiología , Triticum/genética , Triticum/metabolismo , Fusarium/patogenicidad , Tricotecenos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Genes Bacterianos/genética
4.
J Virol ; 97(4): e0009523, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37014223

RESUMEN

Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Interferón Tipo I , Proteína 1 Supresora de la Señalización de Citocinas , Animales , Patos , Flavivirus/fisiología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Receptor Toll-Like 3/metabolismo , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación , Proteína 1 Supresora de la Señalización de Citocinas/inmunología , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/virología , Unión Proteica , Dominios Proteicos/inmunología , Replicación Viral , Células HEK293 , Embrión de Mamíferos , Humanos
5.
J Exp Bot ; 75(10): 3040-3053, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38310636

RESUMEN

Sugarcane (Saccharum spp.), a leading sugar and energy crop, is seriously impacted by drought stress. However, the molecular mechanisms underlying sugarcane drought resistance, especially the functions of epigenetic regulators, remain elusive. Here, we show that a S. spontaneum KDM4/JHDM3 group JmjC protein, SsJMJ4, negatively regulates drought-stress responses through its H3K27me3 demethylase activity. Ectopic overexpression of SsJMJ4 in Arabidopsis reduced drought resistance possibly by promoting expression of AtWRKY54 and AtWRKY70, encoding two negative regulators of drought stress. SsJMJ4 directly bound to AtWRKY54 and AtWRKY70, and reduced H3K27me3 levels at these loci to ensure their proper transcription under normal conditions. Drought stress down-regulated both transcription and protein abundance of SsJMJ4, which was correlated with the reduced occupancy of SsJMJ4 at AtWRKY54 and AtWRKY70 chromatin, increased H3K27me3 levels at these loci, as well as reduced transcription levels of these genes. In S. spontaneum, drought stress-repressed transcription of SsWRKY122, an ortholog of AtWRKY54 and AtWRKY70, was associated with increased H3K27me3 levels at these loci. Transient overexpression of SsJMJ4 in S. spontaneum protoplasts raised transcription of SsWRKY122, paralleled with reduced H3K27me3 levels at its loci. These results suggest that the SsJMJ4-mediated dynamic deposition of H3K27me3 is required for an appropriate response to drought stress.


Asunto(s)
Sequías , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/fisiología , Saccharum/metabolismo , Saccharum/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Histonas/metabolismo , Histonas/genética
6.
Opt Lett ; 49(16): 4561-4564, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146103

RESUMEN

Quantum entanglement serves as an essential resource across various fields, including quantum communication, quantum computing, and quantum precision measurement. Quantum microscope, as one of the significant applications in quantum precision measurement, could bring revolutionary advancements in both signal-to-noise ratio (SNR) and spatial resolution of imaging. Here, we present a quantum microscopy system that relies on a fully fiber-integrated high-performance energy-time entangled light source operating within the near-infrared II (NIR-II) window. Complemented by tailored real-time data acquisition and processing software, we successfully demonstrate the quantum imaging of a standard target, achieving a SNR of 131.51 ± 6.74 and a spatial resolution of 4.75 ± 0.27 µm. Furthermore, we showcase quantum imaging of cancer cells, unveiling the potential of quantum entanglement in biomedical applications. Our fiber-integrated quantum microscope, characterized by high imaging SNR, instantaneous image capture, and analysis capabilities, marks an important step toward the practical application in life sciences.

7.
BMC Cancer ; 24(1): 538, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678181

RESUMEN

BACKGROUND: Patients with immunocompromise were suspected to encounter a high risk for severe coronavirus disease 2019 (COVID-19) infection on early period; however, data is lacking nowadays and immune response remain unclear. METHODS: In this retrospective study, internet questionnaire survey and medical records were acquired in pediatric hematology oncology patients. Clinical severity, immunological characteristics, and outcomes were analyzed from December 1, 2022 to January 31, 2023 at the 3rd year of pandemic in China. RESULTS: A total of 306 patients were included, with 21 patients (6.9%) asymptomatic, 262 (85.6%) mild severity, 17 (5.6%) moderate severity, 5 (1.6%) severe severity, and 1 (0.3%) critical severity. Seventy-eight (25.5%) patients were on intensive chemotherapy, and 32.0% children were on maintenance chemotherapy. Delays in cancer therapy occurred in 86.7% patients. Univariable analysis revealed active chemotherapy (P < 0.0001), long duration of symptom (P < 0.0001), low lymphocytes count (P = 0.095), low CD3 + and CD8 + T cell count (P = 0.013, P = 0.022), high percentage of CD4 + TCM (P = 0.016), and low percentage of transitional B cells (P = 0.045) were high risk factors for severe COVID-19 infection. Cox regression model showed that the absolute lymphocytes count (P = 0.027) and long duration of symptom (P = 0.002) were the independent factors for severity. Patients with CD8 + dominant and B cell depletion subtype wasn't related with severity, but had higher percentage of CD8 + effector memory T cells (TEM) and terminally differentiated effector memory T cells (TEMRA) (P < 0.001, P < 0.001), and a longer COVID-19 duration (P = 0.045). CONCLUSION: The severity was relatively mild in children with immunodeficiencies in the third year of COVID-19 pandemic. Low lymphocyte count and long duration of symptom were the independent risk factors with COVID-19 severity. Delays in cancer care remain a major concern and the long outcome is pending.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/epidemiología , COVID-19/complicaciones , Niño , Masculino , Femenino , Estudios Retrospectivos , Preescolar , Adolescente , SARS-CoV-2/inmunología , Inmunofenotipificación , China/epidemiología , Lactante , Recuento de Linfocitos , Índice de Severidad de la Enfermedad , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/complicaciones , Neoplasias/inmunología
8.
Physiol Plant ; 176(2): e14232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450746

RESUMEN

Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.


Asunto(s)
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucurbita/genética , Xenoinjertos , Cotiledón , Azúcares , Almidón , Sacarosa
9.
Med Sci Monit ; 30: e944265, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074073

RESUMEN

With the surge in the human coastal population and the increasing frequency of human activities along the coast, cases of marine envenomation, particularly jellyfish envenomation, have notably risen. Jellyfish stings can induce a spectrum of symptoms that vary in severity, encompassing skin injuries, acute systemic venom effects, delayed indirect sequelae, and even fatality, causing significant distress to patients. Among these manifestations, the occurrence of skin lesions following jellyfish stings is prevalent and substantial. These lesions are characterized by evident blister formation, development of bullae, subcutaneous hemorrhage, erythema, papules, wheal, ecchymosis, and ulceration or skin necrosis. Local cutaneous manifestations may persist for several weeks or even months after the initial sting. Despite aggressive treatment, many skin injuries still result in significant pigmentation or scarring after recovery. To address this issue effectively, it is imperative to conduct comprehensive evidence-based medical research, elucidate various components within jellyfish venom, and elucidate its pathogenic mechanism to develop targeted treatment programs. This article aims to review the skin symptoms, pathophysiology, and management of jellyfish stings. Such considerations can provide comprehensive guidance to medical professionals and the public and minimize the harm caused by jellyfish stings.


Asunto(s)
Mordeduras y Picaduras , Venenos de Cnidarios , Piel , Humanos , Mordeduras y Picaduras/terapia , Mordeduras y Picaduras/fisiopatología , Mordeduras y Picaduras/complicaciones , Animales , Piel/patología , Piel/fisiopatología , Cnidarios , Enfermedades de la Piel/terapia , Enfermedades de la Piel/fisiopatología , Enfermedades de la Piel/etiología , Escifozoos
10.
J Toxicol Environ Health A ; 87(10): 421-427, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38551405

RESUMEN

Vascular dementia (VD) a heterogenous group of brain disorders in which cognitive impairment is attributable to vascular risk factors and cerebrovascular disease. A common phenomenon in VD is a dysfunctional cerebral regulatory mechanism associated with insufficient cerebral blood flow, ischemia and hypoxia. Under hypoxic conditions oxygen supply to the brain results in neuronal death leading to neurodegenerative diseases including Alzheimer's (AD) and VD. In conditions of hypoxia and low oxygen perfusion, expression of hypoxia-inducible factor 1 alpha (HIF-1α) increases under conditions of low oxygen and low perfusion associated with upregulation of expression of hypoxia-upregulated mitochondrial movement regulator (HUMMR), which promotes anterograde mitochondrial transport by binding with trafficking protein kinesin 2 (TRAK2). Schisandrin B (Sch B) an active component derived from Chinese herb Wuweizi prevented ß-amyloid protein induced morphological alterations and cell death using a SH-SY5Y neuronal cells considered an AD model. It was thus of interest to determine whether Sch B might also alleviate VD using a rat bilateral common carotid artery occlusion (BCAO) dementia model. The aim of this study was to examine the effects of Sch B in BCAO on cognitive functions such as Morris water maze test and underlying mechanisms involving expression of HIF-1α, TRAK2, and HUMMR levels. The results showed that Sch B improved learning and memory function of rats with VD and exerted a protective effect on the hippocampus by inhibition of protein expression of HIF-1α, TRAK2, and HUMMR factors. Evidence indicates that Sch B may be considered as an alternative in VD treatment.


Asunto(s)
Demencia Vascular , Lignanos , Neuroblastoma , Compuestos Policíclicos , Ratas , Humanos , Animales , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Aprendizaje por Laberinto/fisiología , Hipoxia , Cognición , Hipocampo , Oxígeno/farmacología , Ciclooctanos
11.
Nucleic Acids Res ; 50(4): 2223-2239, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35104889

RESUMEN

N 6-Threonylcarbamoyladenosine (t6A) is a universal and pivotal tRNA modification. KEOPS in eukaryotes participates in its biogenesis, whose mutations are connected with Galloway-Mowat syndrome. However, the tRNA substrate selection mechanism by KEOPS and t6A modification function in mammalian cells remain unclear. Here, we confirmed that all ANN-decoding human cytoplasmic tRNAs harbor a t6A moiety. Using t6A modification systems from various eukaryotes, we proposed the possible coevolution of position 33 of initiator tRNAMet and modification enzymes. The role of the universal CCA end in t6A biogenesis varied among species. However, all KEOPSs critically depended on C32 and two base pairs in the D-stem. Knockdown of the catalytic subunit OSGEP in HEK293T cells had no effect on the steady-state abundance of cytoplasmic tRNAs but selectively inhibited tRNAIle aminoacylation. Combined with in vitro aminoacylation assays, we revealed that t6A functions as a tRNAIle isoacceptor-specific positive determinant for human cytoplasmic isoleucyl-tRNA synthetase (IARS1). t6A deficiency had divergent effects on decoding efficiency at ANN codons and promoted +1 frameshifting. Altogether, our results shed light on the tRNA recognition mechanism, revealing both commonality and diversity in substrate recognition by eukaryotic KEOPSs, and elucidated the critical role of t6A in tRNAIle aminoacylation and codon decoding in human cells.


Asunto(s)
Eucariontes , ARN de Transferencia de Isoleucina , Adenosina/genética , Animales , Codón , Eucariontes/genética , Células HEK293 , Humanos , Mamíferos/genética , Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARN de Transferencia de Metionina
12.
Nucleic Acids Res ; 50(7): 4012-4028, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35357504

RESUMEN

METTL8 has recently been identified as the methyltransferase catalyzing 3-methylcytidine biogenesis at position 32 (m3C32) of mitochondrial tRNAs. METTL8 also potentially participates in mRNA methylation and R-loop biogenesis. How METTL8 plays multiple roles in distinct cell compartments and catalyzes mitochondrial tRNA m3C formation remain unclear. Here, we discovered that alternative mRNA splicing generated several isoforms of METTL8. One isoform (METTL8-Iso1) was targeted to mitochondria via an N-terminal pre-sequence, while another one (METTL8-Iso4) mainly localized to the nucleolus. METTL8-Iso1-mediated m3C32 modification of human mitochondrial tRNAThr (hmtRNAThr) was not reliant on t6A modification at A37 (t6A37), while that of hmtRNASer(UCN) critically depended on i6A modification at A37 (i6A37). We clarified the hmtRNAThr substrate recognition mechanism, which was obviously different from that of hmtRNASer(UCN), in terms of requiring a G35 determinant. Moreover, SARS2 (mitochondrial seryl-tRNA synthetase) interacted with METTL8-Iso1 in an RNA-independent manner and modestly accelerated m3C modification activity. We further elucidated how nonsubstrate tRNAs in human mitochondria were efficiently discriminated by METTL8-Iso1. In summary, our results established the expression pattern of METTL8, clarified the molecular basis for m3C32 modification by METTL8-Iso1 and provided the rationale for the involvement of METTL8 in tRNA modification, mRNA methylation or R-loop biogenesis.


Asunto(s)
Metiltransferasas/metabolismo , Mitocondrias/metabolismo , ARN de Transferencia , Empalme Alternativo , Humanos , Metiltransferasas/genética , Mitocondrias/genética , ARN Mensajero , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Treonina/genética
13.
BMC Public Health ; 24(1): 865, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509529

RESUMEN

BACKGROUND: Following China's official designation as malaria-free country by WHO, the imported malaria has emerged as a significant determinant impacting the malaria reestablishment within China. The objective of this study is to explore the application prospects of machine learning algorithms in imported malaria risk assessment of China. METHODS: The data of imported malaria cases in China from 2011 to 2019 was provided by China CDC; historical epidemic data of malaria endemic country was obtained from World Malaria Report, and the other data used in this study are open access data. All the data processing and model construction based on R, and map visualization used ArcGIS software. RESULTS: A total of 27,088 malaria cases imported into China from 85 countries between 2011 and 2019. After data preprocessing and classification, clean dataset has 765 rows (85 * 9) and 11 cols. Six machine learning models was constructed based on the training set, and Random Forest model demonstrated the best performance in model evaluation. According to RF, the highest feature importance were the number of malaria deaths and Indigenous malaria cases. The RF model demonstrated high accuracy in forecasting risk for the year 2019, achieving commendable accuracy rate of 95.3%. This result aligns well with the observed outcomes, indicating the model's reliability in predicting risk levels. CONCLUSIONS: Machine learning algorithms have reliable application prospects in risk assessment of imported malaria in China. This study provides a new methodological reference for the risk assessment and control strategies adjusting of imported malaria in China.


Asunto(s)
Malaria , Humanos , Reproducibilidad de los Resultados , Malaria/epidemiología , Medición de Riesgo , China/epidemiología , Aprendizaje Automático
14.
BMC Public Health ; 24(1): 2424, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243030

RESUMEN

BACKGROUND: Numerous reports indicate that both obesity and type 2 diabetes mellitus (T2DM) are factors associated with cognitive impairment (CI). The objective was to assess the relationship between abdominal obesity as measured by waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and CI in middle-aged and elderly patients with T2DM. METHODS: A cross-sectional study was conducted, in which a total of 1154 patients with T2DM aged ≥ 40 years were included. WHRadjBMI was calculated based on anthropometric measurements and CI was assessed utilizing the Montreal Cognitive Assessment (MoCA). Participants were divided into CI group (n = 509) and normal cognition group (n = 645). Correlation analysis and binary logistic regression were used to explore the relationship between obesity-related indicators including WHRadjBMI, BMI as well as waist circumference (WC) and CI. Meanwhile, the predictive power of these indicators for CI was estimated by receiver operating characteristic (ROC) curves. RESULTS: WHRadjBMI was positively correlated with MoCA scores, independent of sex. The Area Under the Curve (AUC) for WHRadjBMI, BMI and WC were 0.639, 0.521 and 0.533 respectively, and WHRadjBMI had the highest predictive power for CI. Whether or not covariates were adjusted, one-SD increase in WHRadjBMI was significantly related to an increased risk of CI with an adjusted OR of 1.451 (95% CI: 1.261-1.671). After multivariate adjustment, the risk of CI increased with rising WHRadjBMI quartiles (Q4 vs. Q1 OR: 2.980, 95%CI: 2.032-4.371, P for trend < 0.001). CONCLUSIONS: Our study illustrated that higher WHRadjBMI is likely to be associated with an increased risk of CI among patients with T2DM. These findings support the detrimental effects of excess visceral fat accumulation on cognitive function in middle-aged and elderly T2DM patients.


Asunto(s)
Índice de Masa Corporal , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Relación Cintura-Cadera , Humanos , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Anciano , Disfunción Cognitiva/etiología , Disfunción Cognitiva/epidemiología , Obesidad Abdominal/epidemiología , Obesidad Abdominal/complicaciones , Factores de Riesgo , Adulto , China/epidemiología
15.
Parasitol Res ; 123(1): 106, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243024

RESUMEN

Giardia duodenalis is an intestinal protozoan that can infect both humans and animals, leading to public health issues and economic losses in the livestock industry. G. duodenalis has been reported to infect dairy cattle, but there is limited information available on large-scale dairy farms in Xinjiang, China. The study collected 749 fresh faecal samples from five large-scale cattle farms in Xinjiang, China. The study used a nested PCR assay of the small subunit ribosomal RNA (SSU rRNA*) gene to determine the presence of G. duodenalis. The results showed that 24.0% (180/749) of dairy cattle were positive for G. duodenalis, with the highest infection rate observed in pre-weaned calves (45.1%, 69/153). Among the 180 G. duodenalis positive samples, three assemblages were identified: assemblage E (n = 176), assemblage A (n = 3) and assemblage B (n = 1). Sixty-nine, 67 and 49 sequences were obtained for the beta-giardin (bg*) gene, the glutamate dehydrogenase (gdh*) gene and the triose phosphate isomerase (tpi*) gene, respectively. Thirteen novel sequences of assemblage E were identified, including five sequences from the bg* gene, four sequences from the gdh* gene and four sequences from the tpi* gene. This study found that 32 G. duodenalis assemblage E isolates formed 26 MLGs, indicating genetic variation and geographic isolation-based differentiation in bovine-derived G. duodenalis assemblage E. These findings provide fundamental insights into the genetic diversity of G. duodenalis in dairy cattle and can aid in the prevention and control of its occurrence in large-scale dairy cattle farms.


Asunto(s)
Enfermedades de los Bovinos , Giardia lamblia , Giardiasis , Humanos , Bovinos , Animales , Giardia lamblia/genética , Giardiasis/epidemiología , Giardiasis/veterinaria , Granjas , Tipificación de Secuencias Multilocus/veterinaria , Genotipo , Enfermedades de los Bovinos/epidemiología , Prevalencia , China/epidemiología , Heces
16.
Ecotoxicol Environ Saf ; 283: 116816, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096685

RESUMEN

Fluoride exposure is widespread worldwide and poses a significant threat to organisms, particularly to their gastrointestinal tracts. However, due to limited knowledge of the mechanism of fluoride induced intestinal injury, it has been challenging to develop an effective treatment. To address this issue, we used a series of molecular biology in vitro and in vivo experiments. NaF triggered m6A mediated ferroptosis to cause intestinal damage. Mechanistically, NaF exposure increased the m6A level of SLC7A11 mRNA, promoted YTHDF2 binding to m6A-modified SLC7A11 mRNA, drove the degradation of SLC7A11 mRNA, and led to a decrease in its protein expression, which eventually triggers ferroptosis. Moreover, NaF aggravated ferroptosis of the colon after antibiotics destroyed the composition of gut microbiota. 16 S rRNA sequencing and SPEC-OCCU plots, Zi-Pi relationships, and Spearman correlation coefficients verified that Lactobacillus murinus (ASV54, ASV58, and ASV82) plays a key role in the response to NaF-induced ferroptosis. Collectively, NaF-induced gut microbiota alteration mediates severe intestinal cell injury by inducing m6A modification-mediated ferroptosis. Our results highlight a key mechanism of the gut in response to NaF exposure and suggest a valuable theoretical basis for its prevention and treatment.


Asunto(s)
Adenosina , Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Fluoruros , Microbioma Gastrointestinal , Ferroptosis/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Adenosina/análogos & derivados , Fluoruros/toxicidad , Sistema de Transporte de Aminoácidos y+/genética , Ratones , Colon/efectos de los fármacos , Colon/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Fluoruro de Sodio/toxicidad
17.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001135

RESUMEN

Mechanical equipment is composed of several parts, and the interaction between parts exists throughout the whole life cycle, leading to the widespread phenomenon of fault coupling. The diagnosis of independent faults cannot meet the requirements of the health management of mechanical equipment under actual working conditions. In this paper, the dynamic vertex interpretable graph neural network (DIGNN) is proposed to solve the problem of coupling fault diagnosis, in which dynamic vertices are defined in the data topology. First, in the date preprocessing phase, wavelet transform is utilized to make input features interpretable and reduce the uncertainty of model training. In the fault topology, edge connections are made between nodes according to the fault coupling information, and edge connections are established between dynamic nodes and all other nodes. Second the data topology with dynamic vertices is used in the training phase and in the testing phase, the time series data are only fed into dynamic vertices for classification and analysis, which makes it possible to realize coupling fault diagnosis in an industrial production environment. The features extracted in different layers of DIGNN interpret how the model works. The method proposed in this paper can realize the accurate diagnosis of independent faults in the dataset with an accuracy of 100%, and can effectively judge the coupling mode of coupling faults with a comprehensive accuracy of 88.3%.

18.
J Sci Food Agric ; 104(11): 6884-6892, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38591419

RESUMEN

BACKGROUND: Poly-γ-glutamic acid (γ-PGA) is employed extensively in agriculture to enhance soil water retention; however, the underlying mechanism by which γ-PGA improves soil structure and soybean productivity in arid regions remains poorly understood. A micro-scale field experiment was conducted in the arid region of northwest China, employing five concentrations of γ-PGA to investigate its impacts on soybean yield, photosynthesis, and water-use efficiency, as well as soil aggregates and water distribution. The five levels of γ-PGA were 0 (CK), 10 (P1), 20 (P2), 40 (P3), and 80 kg ha-1 (P4). RESULTS: The results demonstrated that the application of γ-PGA significantly improved soybean yield, photosynthesis, and chlorophyll content. It resulted in a decrease in soil aggregate content with a maximum diameter of less than 0.053 mm and an increase in the stability of soil aggregates in the uppermost layer of the soil (0-30 cm). The application of γ-PGA significantly increased soil water content, particularly in the uppermost layer of the soil, and effectively reduced water consumption and improving water use efficiency in soybeans. Overall, the P3 treatment exhibited the most pronounced improvement of soybean yield, photosynthesis, water-use efficiency, as well as distribution of soil aggregates and water. The correlation matrix heatmap also revealed a strong correlation between improvement of soybean yield or photosynthesis at various γ-PGA application levels and the enhancement of soil stability or soil water content. CONCLUSION: The multivariate regression analysis revealed that an optimal application level of 46 kg ha-1 γ-PGA could enhance effectively both yield and water use efficiency of soybean in the arid region of northwest China. © 2024 Society of Chemical Industry.


Asunto(s)
Glycine max , Fotosíntesis , Ácido Poliglutámico , Suelo , Agua , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Glycine max/química , Suelo/química , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/metabolismo , Agua/metabolismo , Agua/análisis , China , Fertilizantes/análisis , Clorofila/metabolismo
19.
Chin J Traumatol ; 27(5): 272-278, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38514297

RESUMEN

PURPOSE: This study evaluated the methods and clinical effects of multidisciplinary collaborative treatment for occlusal reconstruction in patients with old jaw fractures and dentition defects. METHODS: Patients with old jaw fractures and dentition defects who underwent occlusal reconstruction at the Third Affiliated Hospital of Air Force Military Medical University from January 2018 to December 2022 were enrolled. Clinical treatment was classified into 3 phases. In phase I, techniques such as orthognathic surgery, microsurgery, and distraction osteogenesis were employed to reconstruct the correct 3-dimensional (3D) jaw position relationship. In phase II, bone augmentation and soft tissue management techniques were utilized to address insufficient alveolar bone mass and poor gingival soft tissue conditions. In phase III, implant-supported overdentures or fixed dentures were used for occlusal reconstruction. A summary of treatment methods, clinical efficacy evaluation, comparative analysis of imageological examinations, and satisfaction questionnaire survey were utilized to evaluate the therapeutic efficacy in patients with traumatic old jaw fractures and dentition defects. All data are summarized using the arithmetic mean ± standard deviation and compared using independent sample t-tests. RESULTS: In 15 patients with old jaw fractures and dentition defects (an average age of 32 years, ranging from 18 to 53 years), there were 7 cases of malocclusion of single maxillary fracture, 6 of malocclusion of single mandible fracture, and 2 of malocclusion of both maxillary and mandible fractures. There were 5 patients with single maxillary dentition defects, 2 with single mandibular dentition defects, and 8 with both maxillary and mandibular dentition defects. To reconstruct the correct 3D jaw positional relationship, 5 patients underwent Le Fort I osteotomy of the maxilla, 3 underwent bilateral sagittal split ramus osteotomy of the mandible, 4 underwent open reduction and internal fixation for old jaw fractures, 3 underwent temporomandibular joint surgery, and 4 underwent distraction osteogenesis. All patients underwent jawbone augmentation, of whom 4 patients underwent a free composite vascularized bone flap (26.66%) and the remaining patients underwent local alveolar bone augmentation. Free gingival graft and connective tissue graft were the main methods for soft tissue augmentation (73.33%). The 15 patients received 81 implants, of whom 11 patients received implant-supported fixed dentures and 4 received implant-supported removable dentures. The survival rate of all implants was 93.82%. The final imageological examination of 15 patients confirmed that the malocclusion was corrected, and the clinical treatment ultimately achieved occlusal function reconstruction. The patient satisfaction questionnaire survey showed that they were satisfied with the efficacy, phonetics, aesthetics, and comfort after treatment. CONCLUSION: Occlusal reconstruction of old jaw fractures and dentition defects requires a phased sequential comprehensive treatment, consisting of 3D spatial jaw correction, alveolar bone augmentation and soft tissue augmentation, and implant-supported occlusal reconstruction, achieving satisfactory clinical therapeutic efficacy.


Asunto(s)
Fracturas Maxilomandibulares , Humanos , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Adolescente , Adulto Joven , Fracturas Maxilomandibulares/cirugía , Osteogénesis por Distracción/métodos , Dentición , Procedimientos de Cirugía Plástica/métodos , Resultado del Tratamiento , Oclusión Dental
20.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1429-1437, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621926

RESUMEN

This study aims to explore the mechanism of aqueous extract of Strychni Semen(SA) in relieving pain in the rat model of rheumatoid arthritis(RA) via Toll-like receptor 4(TLR4)/tumor necrosis factor-α(TNF-α)/matrix metalloproteinase-9(MMP-9) signaling pathway. Firstly, the main chemical components of Strychni Semen were searched against TCMSP, TCMID, ETCM, and related literature, and the main targets of the chemical components were retrieved from TargetNet and SwissTargetPrediction. The main targets of RA and pain were searched against GeneCards, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). Venny 2.1.0 was used to obtain the common targets shared by Strychni Semen, RA, and pain, and STRING and Cytoscape 3.6.1 were used to build the protein-protein interaction network. Then, molecular docking was carried out in AutoDock Vina. Finally, the rat model of type Ⅱ collagen-induced arthritis(CIA) was established. The up-down method and acetone method were employed to examine the mechanical pain threshold and cold pain threshold of rats, and the pain-relieving effect of SA on CIA rats was evaluated comprehensively. Hematoxylin-eosin(HE) staining was employed to evaluate the histopathological changes of joints in CIA rats. The expression levels of key target proteins was determined by immunohistochemistry and Western blot, and the mRNA levels of key targets were determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). The results of network prediction showed that Strychni Semen may act on the TLR4/TNF-α/MMP-9 signaling pathway to exert the pain-relieving effect. The results of molecular docking showed that brucine, the main active component of SA, had strong binding ability to TLR4, TNF-α, and MMP-9. The results of animal experiments showed that SA improved the mechanical and cold pain sensitivity(P<0.05, P<0.01) and reduced the joint histopathological score of CIA rats(P<0.01). In addition, medium and high doses of SA down-regulated the protein and mRNA levels of TNF-α, TLR4, and MMP-9(P<0.05,P<0.01). In conclusion, SA alleviated the mechanical pain sensitivity, cold pain sensitivity, and joint histopathological changes in CIA rats by inhibiting the over activation of TLR4/TNF-α/MMP-9 signaling pathway.


Asunto(s)
Artritis Reumatoide , Factor de Necrosis Tumoral alfa , Humanos , Ratas , Animales , Factor de Necrosis Tumoral alfa/genética , Metaloproteinasa 9 de la Matriz/genética , Semen , Simulación del Acoplamiento Molecular , Receptor Toll-Like 4/genética , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Transducción de Señal , Dolor/tratamiento farmacológico , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA