Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Langmuir ; 40(16): 8593-8607, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38604806

RESUMEN

Understanding the adsorption mechanism and precisely predicting the thermodynamic adsorption properties of methane at high pressure are crucial while very challenging for shale gas development. In this study, we demonstrated that the Langmuir adsorption model combining with different empirical methods to determine the adsorption phase density makes the calculated isothermal adsorption heat violate Henry's law at low pressure. For instance, the isothermal adsorption heat calculated by the Langmuir-Freundlich model contradicts Henry's law when the absolute adsorption quantity is zero. Given the current challenge in accurately calculating the adsorption phase density, it is necessary to impose constraints on the parameters of the adsorption model by adhering to Henry's law to maintain thermodynamic consistency. We found that the adsorption phase volume of methane molecules lies between the micropore volume and the total pore volume when shale adsorption reaches saturation. The adsorption mechanism involves not only filling micropores but also monolayer adsorption in meso-macro pores. The high-energy adsorption sites for methane are primarily concentrated in organic matter, while within these methane adsorption areas in shale, the high-energy adsorption sites for water are mainly located in kaolinite within clay minerals. The zero-pressure heat of adsorption is a temperature-independent thermodynamic index, yet it is influenced by the water content. It can therefore be selected as a quantitative measure to evaluate the impact of methane adsorption on water.

2.
Chem Rev ; 122(13): 11778-11829, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35699661

RESUMEN

Converting solar energy to fuels has attracted substantial interest over the past decades because it has the potential to sustainably meet the increasing global energy demand. However, achieving this potential requires significant technological advances. Polymer photoelectrodes are composed of earth-abundant elements, e.g. carbon, nitrogen, oxygen, hydrogen, which promise to be more economically sustainable than their inorganic counterparts. Furthermore, the electronic structure of polymer photoelectrodes can be more easily tuned to fit the solar spectrum than inorganic counterparts, promising a feasible practical application. As a fast-moving area, in particular, over the past ten years, we have witnessed an explosion of reports on polymer materials, including photoelectrodes, cocatalysts, device architectures, and fundamental understanding experimentally and theoretically, all of which have been detailed in this review. Furthermore, the prospects of this field are discussed to highlight the future development of polymer photoelectrodes.

3.
Phys Chem Chem Phys ; 26(21): 15717-15732, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38767249

RESUMEN

This study examines how a deionized water droplet behaves when it centrally collides with a liquid film containing TiO2 nanoparticles at low impact velocities, aiming to understand how nanoparticles affect droplet spreading, in particular its maximum spreading diameter. Typically, we found that both the spreading velocity and dynamic contact angle of the droplet would be similarly affected by increasing TiO2 nanoparticle concentration. During retraction, the droplet's dimensionless spreading diameter oscillates, with more pronounced oscillations at higher nanoparticle concentrations. Moreover, both the droplet's maximum dimensionless rebound height and dynamic contact angle show similar trends with increasing TiO2 nanoparticle concentration. Interestingly, we proved that the influence of the solid-liquid interaction (Stokes force) on the fluid during the spreading process accounts for less than 2% of the surface energy when the droplet reaches its maximum spreading diameter, indicating a negligible effect on droplet spreading. We hypothesize that the droplet's initial energy is fully converted into surface energy and viscous dissipation at maximum spreading diameter, which involves viscous dissipation both between the fluid and the solid wall surface and the fluid and solid particle surface. Based on this, we developed a model for predicting the droplet's maximum spreading diameter that includes parameters associated with the solid particles. Compared to models in the literature that do not consider the effect of solid particles, our model aligns more closely with experimental data. The results indicate that adding solid particles leads to increased viscous dissipation, which in turn reduces the droplet's maximum spreading diameter.

4.
Langmuir ; 39(41): 14660-14669, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37802133

RESUMEN

Driving droplets by electric fields is usually achieved by controlling their wettability, and realizing a flexible operation requires complex electrode designs. Here, we show by molecular dynamics methods the droplet transport on hydrophobic surfaces in a rolling manner under a rotating electric field, which provides a simpler and promising way to manipulate droplets. The droplet internal velocity field shows the rolling mode. When the contact angle on the solid surface is 144.4°, the droplet can be transported steadily at a high velocity under the rotating electric field (E = 0.5 V nm-1, ω = π/20 ps-1). The droplet center-of-mass velocities and trajectories, deformation degrees, dynamic contact angles, and surface energies were analyzed regarding the electric field strength and rotational angular frequency. Droplet transport with a complex trajectory on a two-dimensional surface is achieved by setting the electric field, which reflects the programmability of the driving method. Nonuniform wettability stripes can assist in controlling droplet trajectories. The droplet transport on the three-dimensional surface is studied, and the critical conditions for the droplet passing through the surface corners and the motion law on the curved surface are obtained. Droplet coalescence has been achieved by surface designs.

5.
Angew Chem Int Ed Engl ; 62(27): e202304470, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137871

RESUMEN

Cobalt ferrite (CoFe2 O4 ) spinel has been found to produce C2 -C4 hydrocarbons in a single-step, ambient-pressure, photocatalytic hydrogenation of CO2 with a rate of 1.1 mmol g-1 h-1 , selectivity of 29.8 % and conversion yield of 12.9 %. On stream the CoFe2 O4 reconstructs to a CoFe-CoFe2 O4 alloy-spinel nanocomposite which facilitates the light-assisted transformation of CO2 to CO and hydrogenation of the CO to C2 -C4 hydrocarbons. Promising results obtained from a laboratory demonstrator bode well for the development of a solar hydrocarbon pilot refinery.

6.
Chemistry ; 27(68): 16879-16888, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34357594

RESUMEN

A novel hybrid photocatalyst composed of hollow carbon nanospheres (NCS) and graphitic carbon nitride (CN) curly nanosheets has been prepared by the calcination of a NCS precursor and freeze-dried urea. The optimized photocatalyst exhibits an efficient photocatalytic performance under visible light irradiation with a highest H2 generation rate of 3612.3 µmol g-1 h-1 , leading to an apparent quantum yield of 10.04 % at 420 nm, five times higher than the widely reported benchmark photocatalyst CN (2.01 % AQY). The materials characterization shows that NCS-modified CN curly nanosheets can promote photoelectron transfer and suppress charge recombination through their special coupling interface and NCS as an electron acceptor, which significantly improves the photocatalytic efficiency. Thus, this study provides an efficient strategy for the design of highly efficient photocatalyst, particularly suitable for a totally metal-free photocatalytic system.

7.
Langmuir ; 37(22): 6673-6680, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34030443

RESUMEN

Controlling droplet deposition on a hydrophobic surface has received much attention due to its wide applications. Addition of certain elements into a working droplet is a feasible way to improve drop deposition, which, however, often leads to a significant change in droplet spreading properties. In this work, we show that adding a small amount of hydrophilic TiO2 nanoparticles without any surfactant can significantly suppress the droplet rebound and even generate a whole contact line pinning on the hydrophobic surface. The whole contact line pinning is positively related to the Weber number (i.e., impact velocity) and suspension concentration. Specifically, when the suspension concentration exceeds a critical value, the pinning and droplet deposition occur in the same We range. A mechanism is proposed to explain the observed unique pinning and depinning behaviors, according to which the agglomerated TiO2 particles depositing at the triple line can change the wettability of the local surface, which leads to pinning, while the disturbance of capillary oscillation leads to depinning. Interestingly, a long-time whole contact line pinning for more than a second was observed under certain conditions. This work can be of value for many practical applications such as pesticide deposition and spray cooling.

8.
Nano Lett ; 20(12): 8965-8971, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33231457

RESUMEN

Thermo-osmosis driven by temperature gradients generally requires two liquid reservoirs at different temperatures connected by porous bodies or capillaries. We demonstrate, by molecular dynamics simulation, a new phenomenon toward nanoscale thermo-osmosis. Upon heating at a certain region of a nanochannel, multiple nanoscale convective layers are formed and can be manipulated to generate a net fluid transport from one reservoir to another, even without a temperature difference between them. A net unidirectional fluid transport with different rates can be achieved by precisely controlling location of the heated region. The net fluid transport can be enhanced further by tuning liquid-wall interactions. The demonstrated phenomenon provides a strategy for enhancing fluid mixing, which is often inefficient in nanoscale flows. Our finding is promising for chip-level cooling. The heat generated by chips can be employed to produce asymmetric temperature gradients in channels through proper configuration. Coolant liquids can thus be circulated without extra pumps.

9.
Phys Chem Chem Phys ; 20(22): 15223-15235, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29789835

RESUMEN

Combinations of nanoparticles and surfactants have been widely employed in many industrial processes, i.e., boiling and condensation in heat transfer and hydraulic fracturing in shale oil and gas production, etc. However, the underlying mechanism for various phenomena resulting from the addition of nanoparticles into the surfactant solutions is still unclear. For instance, there are contradictory conclusions from the literature regarding the variations of surface tension upon the addition of nanoparticles into surfactant solutions. In this work, the dominating factors determining if the surface activity of the surfactant solution will increase or conversely decrease when adding certain kinds of nanoparticles have been investigated. Two typical hydrophilic nanoparticles, SiO2 and TiO2 with anionic or cationic surfactants, respectively, have been considered. The surface tension has been measured in a wide range of nanoparticle and surfactant concentrations. It was found that the surface tension of the ionic surfactant solution can be further reduced only if nanoparticles of the same charge were added. For instance, a system containing 0.25 CMC SDS and 1 wt% SiO2 behaves similar to a 0.34 CMC SDS-only solution. Interestingly, the observed synergistic effect is found to be more significant if the surfactant concentration is much lower than its CMC for a given nanoparticle content. Moreover, the effect is perfectly reversible. When the nanoparticles were separated from the system, the surface tension values recovered fully to that of the pure surfactants. If nanoparticles of opposite charge were added, however, the surface tension of the surfactant solution increased. Zeta potential measurement and centrifugal treatment have been employed to reveal the interplay between nanoparticles and surfactants and the adsorption behavior of their assemblies at the liquid/air interface. Based on the experimental outcomes, a possible physical mechanism was proposed. It was concluded that the electrostatic repulsion between surfactant molecules and nanoparticles should be the dominant factor responsible for the observed reversible synergistic effect. Our study is expected to contribute to a better understanding of the interfacial phenomenon in nanoparticle-surfactant complex systems.

10.
J Phys Chem Lett ; 14(25): 5740-5747, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37318775

RESUMEN

It is first proposed to use a rotating electric field to stretch a droplet into a liquid film pinned to the insulated channel inner wall as a new type of active liquid valve. The molecular dynamics (MD) simulations are performed to prove that droplets in nanochannels can be stretched and expanded into closed liquid films under the action of rotating electric fields. The variations of the liquid cross-sectional area and droplet surface energy with time are calculated. The liquid film formation occurs mainly through two modes: gradual expansion and liquid column rotation. In most cases, increasing the electric field strength and angular frequency favors liquid film closing. At higher angular frequencies, decreasing the angular interval favors liquid film closing. The opposite is true at lower angular frequencies. The process of closing the hole-containing liquid film, which has formed a dynamic equilibrium, is a surface energy increase process, which requires greater electric field strength and angular frequency.

11.
J Colloid Interface Sci ; 641: 309-318, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36934578

RESUMEN

A new heterostructure between Ti3C2 MXene quantum dot and 3D macroscopic porous graphitic carbon nitride (PGCN) was successfully obtained by integrating Ti3C2 quantum dots onto porous graphitized carbon nitride (Ti3C2QDs/PGCN) using in situ electrostatic self-assembly techniques. The photocatalytic H2 evolution rate of optimized 5.5 wt% Ti3C2 QD/PGCN composites is nearly 15.24 and 3.53 times higher than pristine CN, and PGCN, respectively. Ti3C2 quantum dots can significantly enhance the hydrogen production activity of PGCN. In addition, their good photothermal conversion ability accelerates the overall reaction process and enhances the light absorption and carrier density. Furthermore, to elucidate the photocatalytic mechanism, a series of tests involving electron spin resonance (ESR) and density functional theory (DFT) calculations were performed. The results confirmed that the Schottky barrier between PGCN and Ti3C2 QD can effectively promote spatial charge separation and significantly improve the photocatalytic performance. This work provides a new approach for the construction of photocatalytic systems and the application of MXene QD.

12.
ACS Appl Mater Interfaces ; 15(42): 49892-49901, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37815919

RESUMEN

Solar-driven interfacial evaporation (SIE) technology has great advantages in seawater desalination. However, during the long-term operation of a solar evaporator, salts can be deposited on the solar absorbing surface, which, in turn, hinders the evaporation process. Therefore, there is an urgent need to propose new antisalt strategies to solve this problem. Here, we present a novel cogeneration system leveraging a salt-tolerant, heterogeneous Janus-structured evaporator (FHJE) for simultaneous solar desalination and thermoelectric generation. The top evaporation layer is composed of a graphene-based photothermal membrane pre-embedded with Fe3+ cations, which enhanced solar absorption and energy conversion abilities. Meanwhile, the Fe3+ cations further contribute to the Donnan effect, effectively repelling salt ions in saltwater. The bottom layer comprises a hydrogel composed of hydrophilic phytic acid (PA) and poly(vinyl alcohol) (PVA), fostering facilitation of water transport. The FHJE was demonstrated to exhibit evaporation rate and efficiency as high as 3.655 kg m-2 h-1 and 94.7% in 10 wt% saltwater, respectively, and superior salt resistance ability without salt accumulation after 8 h of continuous evaporation (15 wt%). Furthermore, a hydropower cogeneration evaporator device was constructed, and it possesses an open-circuit voltage (VOC) and a maximum output power density of up to 143 mV and 1.33 W m-2 under 1 sun, respectively. This study is expected to provide new ideas for comprehensive utilization of solar energy.

13.
J Colloid Interface Sci ; 636: 341-350, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638573

RESUMEN

Heterojunctions have been verified to be effective for separation of photogenerated electrons and holes, therefore improving the photocatalytic efficiency. Meanwhile, cerium oxide (CeO2) is an ideal semiconductor for studying the influence of different exposed crystal facets on regulation of electron transport pathways over heterojunctions. Herein, various kinds of crystal facet-dependent CeO2/g-C3N4 (graphitic carbon nitride) heterojunctions have been successfully engineered as representative model catalysts, and their critical role in regulating charge transfer pathways has been confirmed by systemic characterizations. It was found that facet-dependent heterojunctions followed different charge transport pathways, leading to different H2 evolution activities. In detail, heterojunctions with (100) and (110) exposed surfaces followed the Z-scheme transport pathways, while heterojunction with (111) exposed surface followed the type-II pathway. The H2 evolution rates via these three kinds of heterojunctions were determined to be 3.084, 1.925, and 1.128 mmol·g-1·h-1, respectively, which were 13.3, 7.9, 4.2 times that of bare g-C3N4. It's revealed that the different exposed crystal facets of CeO2 with different Fermi levels determine the transport pathways of photogenerated carriers. This work shows an example of controlling photocatalytic activity by facet-dependent heterojunctions and reveals the importance role of crystal-facet engineering toward heterojunction construction, which is expected to provide an important guidance for the design of new photocatalytic systems.

14.
Chemistry ; 18(24): 7543-51, 2012 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-22532311

RESUMEN

A series of upconversion luminescent erbium-doped SrTiO(3) (ABO(3)-type) photocatalysts with different initial molar ratios of Sr/Ti have been prepared by a facile polymerized complex method. Er(3+) ions, which were gradually transferred from the A to the B site with increasing Sr/Ti, enabled the absorption of visible light and the generation of high-energy excited states populated by upconversion processes. The local internal fields arising from the dipole moments of the distorted BO(6) octahedra promoted energy transfer from the high-energy excited states of Er(3+) with B-site occupancy to the host SrTiO(3) and thus enhanced the band-to-band transition of the host SrTiO(3). Consequently, the erbium-doped SrTiO(3) species with B-site occupancy showed higher photocatalytic activity than those with A-site occupancy for visible-light-driven H(2) or O(2) evolution in the presence of the corresponding sacrificial reagents. The results generally suggest that the introduction of upconversion luminescent agents into host semiconductors is a promising approach to simultaneously harnessing low-energy photons and maintaining redox ability for photocatalytic H(2) and O(2) evolution and that the site occupancy of doped elements in ABO(3)-type perovskite oxides greatly determines the photocatalytic activity.

15.
J Colloid Interface Sci ; 608(Pt 2): 2058-2065, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34749153

RESUMEN

Reduced graphene oxide (rGO) has conspicuous photothermal characteristics in photothermal applications. Thus in our previous work, we used reduced graphene oxide (rGO) supported titanium dioxide (TiO2) nanocomposite (rGO/TiO2) to absorb the ultraviolet and infrared light in the photothermal hydrogen evolution process. In order to make use of the full spectrum solar energy into other clear energy, the visible light should be also considered in following research. Herein, we report a cuprous oxide (Cu2O) decorated reduced graphene oxide (rGO) supported titanium dioxide (TiO2) (Cu2O-rGO/TiO2) catalysts, which can absorb full spectrum solar light in an innovative way. The Cu2O-rGO/TiO2 catalyst is synthesized through a one-step hydrothermal method. The rates of hydrogen evolution are 17800 µmol·g-1h-1 under photothermal condition (90°C), 3800 µmol·g-1h-1 under photocatalysis condition only (25°C) and 0 µmol·g-1h-1 under thermal catalysis condition only. The result of photothermal catalytic hydrogen evolution rate is about 4.7 times that of the sum of the photocatalytic and thermal reactions. The photothermal synergetic effect promotes the photo-generated electron-holes separation through the rGO due to the temperature rising, and accelerates the reaction rates on the catalyst surface in hydrogen evolution process simultaneously. This work could provide us a new promising way for the conversion of full spectrum solar energy to hydrogen energy.

16.
J Colloid Interface Sci ; 626: 975-984, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35839678

RESUMEN

It is challenging to maximize the utilization of solar energy using photocatalysis or photothermal catalysis alone. Herein, we report a full spectrum solar energy driven photothermal-assisted photocatalytic hydrogen production over CuNi bimetallic nanoparticles co-loaded with graphitized carbon nitride nanosheet layers (CuxNiy/CN) which are prepared by a facile in-situ reduction method. Cu5Ni5/CN shows a high hydrogen production rate of 267.8 µmol g-1 h-1 at room temperature, which is 70.5 and 1.34 times of that for pure CN (3.8 µmol g-1 h-1) and 0.5 wt% Pt/CN (216 µmol g-1 h-1), respectively. The photothermal catalytic hydrogen activity can be further increased by 3.7 times when reaction solution is external heated to 100 °C. For the photothermal catalytic system, the local surface plasmon resonance (LSPR) effect over active Cu nanoparticles can absorb near-infrared light to generate hot electrons, which are partially quenched to generate heat for heating of the reaction system and partially transported to the active sites, where the Ni nanoparticles as another functional component couple the electrons and heat to finally promote the photothermal catalytic activity. Our result suggests that a rational design of the catalyst with bifunctional atomic components can photothermocatalysis-assisted photocatalysis to maximize utilization solar energy for efficient full spectrum conversion.

17.
Nanoscale ; 14(18): 7083-7095, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35476112

RESUMEN

Photocatalytic hydrogen evolution is one promising method for solar energy conversion, but the rapid charge recombination limits its efficiency. To this end, in this work, grain size, and hence the charge carrier migration path, is reduced by lowering the synthesis temperature of two-dimensional visible light-responsive La2NiO4 perovskite. Interestingly, the hydrogen yield for the piezoelectric response of La2NiO4 under only 40 kHz ultrasonic vibration is as high as 680 µmol h-1 g-1, which is 80 times that under only 600 mW cm-2 visible light irradiation. More surprisingly, the hydrogen production rate under both light illumination and ultrasonic vibration is 129 times higher than under visible light irradiation alone. Clearly, a synergistic effect exists between piezocatalysis and photocatalysis. The hydrogen production activity of the samples with water splitting can reach 1097 µmol h-1 g-1 without any sacrificial reagent or co-catalyst, when the light intensity reaches about 1000 mW cm-2, which is a much higher hydrogen evolution rate by piezo-photocatalysis than is achieved by either piezocatalysis or photocatalysis individually. Further analysis indicates that the internal electric field generated by deformation of the La2NiO4 edge under piezoelectric action facilitates the directional separation and migration of photogenerated charges, which in turn significantly enhances the efficiency of use of photogenerated charges for hydrogen production. The investigation here provides a novel approach to design a new reaction system for hydrogen production by coupling multiple external physical fields.

18.
Fundam Res ; 2(2): 222-229, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38933170

RESUMEN

In this study, the evaporation characteristics and drying patterns of various sessile ferrofluid droplets on certain substrate under horizontal magnetic fields of controlled intensities are reported. The effects of droplet concentration and magnetic field intensity on the duration of each evaporation stage and drying patterns of droplets have been systematically investigated. It turned out that a plateau appears at the initial stage of evaporation in the absence of magnetic field and it was found that the plateau value is positively correlated with the concentration of ferrofluid droplets. Under the external magnetic field, the evaporation time of droplets decreases, the stage of contact line retreat extends, the stage of late pinning mode shortens, and the deposition area of ferrofluid droplet decreases compared to that of without magnetics field. The deposition area increases gradually and becomes more uniform with the increase of magnetic field. The decrease of friction force which is due to the decrease of the number of nanoparticles at the contact line under external magnetic field is the main reason for the observed phenomena. We found that the coffee ring and the uniform deposition inside the droplet will be destroyed when the magnetic field intensity is higher than a critical value. Our work has a significant reference value for the evaporation of sessile magnetic fluid droplets under the applied magnetic field, especially when the drying pattern needs to be precisely controlled, such as in spray or biomedicine.

19.
J Colloid Interface Sci ; 626: 759-767, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35820211

RESUMEN

Carbon materials have aroused wide attention in the field of electromagnetic wave absorption because of their advantages of good electrical conductivity, low density and adjustable structure. To obtain enhanced performance of electromagnetic wave absorption, the elaborate design of structures for carbon materials has become essential. In this work, the nitrogen-doped and large diameter carbon nanotubes modified with cobalt nanoparticles (M-Co/C-CNTs) composites were successfully prepared by adsorption and carbonization of the gases generated by organic matter pyrolysis. It is concluded that the enhanced conduction loss and polarization loss are attributed to the interfacial electronic engineering induced by the sensibly loaded cobalt nanoparticles and nitrogen doping. As a result, the samples achieved a broad effective absorption bandwidth of 4.56 GHz, and a strong reflection loss of -52.2 dB with a thin thickness of 2.1 mm. This work proposes a tailored way to fabricate the large diameter carbon nanotube composites and enhance electromagnetic wave absorption through novel structural modulation.

20.
J Phys Chem Lett ; 12(41): 10099-10105, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34633822

RESUMEN

Shear flows play critical roles in biological systems and technological applications and are achieved experimentally using moving parts. However, when the system size is reduced to micro- and nanoscale, fabrication of moving parts becomes exceedingly challenging. We demonstrate that a heterogeneous nanochannel composed of two parallel walls with different wetting behaviors can generate shear flow without moving parts. Molecular dynamics simulations show that shear flows can be formed inside such a nanochannel under a temperature gradient. The physical origin is that thermo-osmosis velocities with different rates and directions can be tuned by wetting behaviors. Our analysis reveals that thermo-osmosis is governed by surface excess enthalpy and nanoscale interfacial hydrodynamics. This finding provides an efficient method of generating controllable shear flows at micro- and nanoscale confinement. It also demonstrates the feasibility of using fluids to drive micromechanical elements via shear torques generated by harvesting energy from temperature differences.


Asunto(s)
Hidrodinámica , Nanoestructuras/química , Simulación de Dinámica Molecular , Ósmosis , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA