Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.380
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(1): 239-253.e17, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30197081

RESUMEN

Many disease-causing missense mutations affect intrinsically disordered regions (IDRs) of proteins, but the molecular mechanism of their pathogenicity is enigmatic. Here, we employ a peptide-based proteomic screen to investigate the impact of mutations in IDRs on protein-protein interactions. We find that mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, ITPR1, and CACNA1H) lead to an increased clathrin binding. All three mutations create dileucine motifs known to mediate clathrin-dependent trafficking. Follow-up experiments on GLUT1 (SLC2A1), the glucose transporter causative of GLUT1 deficiency syndrome, revealed that the mutated protein mislocalizes to intracellular compartments. Mutant GLUT1 interacts with adaptor proteins (APs) in vitro, and knocking down AP-2 reverts the cellular mislocalization and restores glucose transport. A systematic analysis of other known disease-causing variants revealed a significant and specific overrepresentation of gained dileucine motifs in structurally disordered cytosolic domains of transmembrane proteins. Thus, several mutations in disordered regions appear to cause "dileucineopathies."


Asunto(s)
Transportador de Glucosa de Tipo 1/fisiología , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/fisiología , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/fisiología , Errores Innatos del Metabolismo de los Carbohidratos , Clatrina/metabolismo , Citoplasma/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Proteínas Intrínsecamente Desordenadas/metabolismo , Leucina/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Monosacáridos/deficiencia , Mutación/genética , Péptidos , Unión Proteica , Proteómica/métodos
2.
Cell ; 170(3): 548-563.e16, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753429

RESUMEN

Gut microbiota are linked to chronic inflammation and carcinogenesis. Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer patients. Here, we investigated the contribution of gut microbiota to chemoresistance in patients with colorectal cancer. We found that Fusobacterium (F.) nucleatum was abundant in colorectal cancer tissues in patients with recurrence post chemotherapy, and was associated with patient clinicopathological characterisitcs. Furthermore, our bioinformatic and functional studies demonstrated that F. nucleatum promoted colorectal cancer resistance to chemotherapy. Mechanistically, F. nucleatum targeted TLR4 and MYD88 innate immune signaling and specific microRNAs to activate the autophagy pathway and alter colorectal cancer chemotherapeutic response. Thus, F. nucleatum orchestrates a molecular network of the Toll-like receptor, microRNAs, and autophagy to clinically, biologically, and mechanistically control colorectal cancer chemoresistance. Measuring and targeting F. nucleatum and its associated pathway will yield valuable insight into clinical management and may ameliorate colorectal cancer patient outcomes.


Asunto(s)
Autofagia , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Fusobacterium nucleatum/fisiología , Microbioma Gastrointestinal , Animales , Antineoplásicos/uso terapéutico , Capecitabina/uso terapéutico , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos , Xenoinjertos , Ratones , MicroARNs/metabolismo , Trasplante de Neoplasias , Compuestos de Platino/uso terapéutico , Recurrencia , Receptores Toll-Like/metabolismo , Microambiente Tumoral
3.
EMBO J ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160276

RESUMEN

Metabolic dysfunction-associated steatohepatitis (MASH, previously termed non-alcoholic steatohepatitis (NASH)), is a major complication of obesity that promotes fatty liver disease. MASH is characterized by progressive tissue fibrosis and sterile liver inflammation that can lead to liver cirrhosis, cancer, and death. The molecular mechanisms of fibrosis in MASH and its systemic control remain poorly understood. Here, we identified the secreted-type pro-fibrotic protein, procollagen C-endopeptidase enhancer-1 (PCPE-1), as a brown adipose tissue (BAT)-derived adipokine that promotes liver fibrosis in a murine obesity-induced MASH model. BAT-specific or systemic PCPE-1 depletion in mice ameliorated liver fibrosis, whereas, PCPE-1 gain of function in BAT enhanced hepatic fibrosis. High-calorie diet-induced ER stress increased PCPE-1 production in BAT through the activation of IRE-1/JNK/c-Fos/c-Jun signaling. Circulating PCPE-1 levels are increased in the plasma of MASH patients, suggesting a therapeutic possibility. In sum, our results uncover PCPE-1 as a novel systemic control factor of liver fibrosis.

4.
Proc Natl Acad Sci U S A ; 121(34): e2405986121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145928

RESUMEN

RAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization. Here, we probe three isoforms of RAS [Kirsten Rat Sarcoma viral oncogene (KRAS), Harvey Rat Sarcoma viral oncogene (HRAS), and Neuroblastoma oncogene (NRAS)] directly from membranes using mass spectrometry. We show that KRAS on membranes in the inactive state (GDP-bound) is monomeric but forms dimers in the active state (GTP-bound). We demonstrate that the small molecule BI2852 can induce dimerization of KRAS, whereas the binding of effector proteins disrupts dimerization. We also show that RAS dimerization is dependent on lipid composition and reveal that oligomerization of NRAS is regulated by palmitoylation. By monitoring the intrinsic GTPase activity of RAS, we capture the emergence of a dimer containing either mixed nucleotides or GDP on membranes. We find that the interaction of RAS with the catalytic domain of Son of Sevenless (SOScat) is influenced by membrane composition. We also capture the activation and monomer to dimer conversion of KRAS by SOScat. These results not only reveal the stoichiometry of RAS assemblies on membranes but also uncover the impact of critical factors on oligomerization, encompassing regulation by nucleotides, lipids, and palmitoylation.


Asunto(s)
Membrana Celular , Multimerización de Proteína , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Humanos , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Lipoilación , Proteínas ras/metabolismo , Proteínas ras/química , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
5.
PLoS Pathog ; 19(2): e1011189, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812247

RESUMEN

Increasing evidence highlights the role of bacteria in promoting tumorigenesis. The underlying mechanisms may be diverse and remain poorly understood. Here, we report that Salmonella infection leads to extensive de/acetylation changes in host cell proteins. The acetylation of mammalian cell division cycle 42 (CDC42), a member of the Rho family of GTPases involved in many crucial signaling pathways in cancer cells, is drastically reduced after bacterial infection. CDC42 is deacetylated by SIRT2 and acetylated by p300/CBP. Non-acetylated CDC42 at lysine 153 shows an impaired binding of its downstream effector PAK4 and an attenuated phosphorylation of p38 and JNK, consequently reduces cell apoptosis. The reduction in K153 acetylation also enhances the migration and invasion ability of colon cancer cells. The low level of K153 acetylation in patients with colorectal cancer (CRC) predicts a poor prognosis. Taken together, our findings suggest a new mechanism of bacterial infection-induced promotion of colorectal tumorigenesis by modulation of the CDC42-PAK axis through manipulation of CDC42 acetylation.


Asunto(s)
Neoplasias Colorrectales , Infecciones por Salmonella , Proteína de Unión al GTP cdc42 , Humanos , Acetilación , Carcinogénesis , Proteína de Unión al GTP cdc42/metabolismo , Transformación Celular Neoplásica , Quinasas p21 Activadas/metabolismo , Transducción de Señal
6.
EMBO Rep ; 24(4): e56325, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36794620

RESUMEN

The frequency of p53 mutations in colorectal cancer (CRC) is approximately 40-50%. A variety of therapies are being developed to target tumors expressing mutant p53. However, potential therapeutic targets for CRC expressing wild-type p53 are rare. In this study, we show that METTL14 is transcriptionally activated by wild-type p53 and suppresses tumor growth only in p53-wild-type (p53-WT) CRC cells. METTL14 deletion promotes both AOM/DSS and AOM-induced CRC growth in mouse models with the intestinal epithelial cell-specific knockout of METTL14. Additionally, METTL14 restrains aerobic glycolysis in p53-WT CRC, by repressing SLC2A3 and PGAM1 expression via selectively promoting m6 A-YTHDF2-dependent pri-miR-6769b/pri-miR-499a processing. Biosynthetic mature miR-6769b-3p and miR-499a-3p decrease SLC2A3 and PGAM1 levels, respectively, and suppress malignant phenotypes. Clinically, METTL14 only acts as a beneficial prognosis factor for the overall survival of p53-WT CRC patients. These results uncover a new mechanism for METTL14 inactivation in tumors and, most importantly, reveal that the activation of METTL14 is a critical mechanism for p53-dependent cancer growth inhibition, which could be targeted for therapy in p53-WT CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Animales , Ratones , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Nature ; 574(7776): 81-85, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554968

RESUMEN

The efficient interconversion of chemicals and electricity through electrocatalytic processes is central to many renewable-energy initiatives. The sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER)1-4 has long posed one of the biggest challenges in this field, and electrocatalysts based on expensive platinum-group metals are often required to improve the activity and durability of these reactions. The use of alloying5-7, surface strain8-11 and optimized coordination environments12 has resulted in platinum-based nanocrystals that enable very high ORR activities in acidic media; however, improving the activity of this reaction in alkaline environments remains challenging because of the difficulty in achieving optimized oxygen binding strength on platinum-group metals in the presence of hydroxide. Here we show that PdMo bimetallene-a palladium-molybdenum alloy in the form of a highly curved and sub-nanometre-thick metal nanosheet-is an efficient and stable electrocatalyst for the ORR and the OER in alkaline electrolytes, and shows promising performance as a cathode in Zn-air and Li-air batteries. The thin-sheet structure of PdMo bimetallene enables a large electrochemically active surface area (138.7 square metres per gram of palladium) as well as high atomic utilization, resulting in a mass activity towards the ORR of 16.37 amperes per milligram of palladium at 0.9 volts versus the reversible hydrogen electrode in alkaline electrolytes. This mass activity is 78 times and 327 times higher than those of commercial Pt/C and Pd/C catalysts, respectively, and shows little decay after 30,000 potential cycles. Density functional theory calculations reveal that the alloying effect, the strain effect due to the curved geometry, and the quantum size effect due to the thinness of the sheets tune the electronic structure of the system for optimized oxygen binding. Given the properties and the structure-activity relationships of PdMo metallene, we suggest that other metallene materials could show great promise in energy electrocatalysis.

8.
Proc Natl Acad Sci U S A ; 119(29): e2206462119, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858305

RESUMEN

Emulsification is a crucial technique for mixing immiscible liquids into droplets in numerous areas ranging from food to medicine to chemical synthesis. Commercial emulsification methods are promising for high production, but suffer from high energy input. Here, we report a very simple and scalable emulsification method that employs the drag-reducing liquid gating structure to create a smooth liquid-liquid interface for the reduction of resistance and tunable generation of droplets with good uniformity. Theoretical modeling and experimental results demonstrate that our method exhibits ultrahigh efficiency, which can reach up to more than 4 orders of magnitude greater energy-saving compared to commercial methods. For temperature-sensitive biological components, such as enzymes, proteins, and bacteria, it can offer a comfortable environment to avoid exposure to high temperatures during emulsifying, and the interface also enables the suppression of fouling. This unique drag-reducing liquid gating interfacial emulsification mechanism promotes the efficiency of droplet generation and provides fresh insight into the innovation of emulsifications that can be applied in many fields, including the food industry, the daily chemical industry, biomedicine, material fabrication, the petrochemical industry, and beyond.

9.
Gut ; 73(2): 268-281, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37734910

RESUMEN

BACKGROUND AND AIMS: Deregulation of RNA N6-methyladenosine (m6A) modification in intestinal epithelial cells (IECs) influences intestinal immune cells and leads to intestinal inflammation. We studied the function of fat mass-and obesity-associated protein (FTO), one of the m6A demethylases, in patients with ulcerative colitis (UC). METHODS: We analysed colon tissues of Ftoflox/flox; Villin-cre mice and their Ftoflox/flox littermates with dextran sulfate sodium (DSS) using real-time PCR and 16s rRNA sequencing. RNA and methylated RNA immunoprecipitation sequencing were used to analyse immunocytes and IECs. Macrophages were treated with conditioned medium of FTO-knockdown MODE-K cells or sphingosine-1-phosphate (S1P) and analysed for gene expression. Liquid chromatograph mass spectrometry identified C16-ceramide. RESULTS: FTO downregulation was identified in our in-house cohort and external cohorts of UC patients. Dysbiosis of gut microbiota, increased infiltration of proinflammatory macrophages, and enhanced differentiation of Th17 cells were observed in Ftoflox/flox;Villin-cre mice under DSS treatment. FTO deficiency resulted in an increase in m6A modification and a decrease in mRNA stability of CerS6, the gene encoding ceramide synthetase, leading to the downregulation of CerS6 and the accumulation of S1P in IECs. Subsequentially, the secretion of S1P by IECs triggered proinflammatory macrophages to secrete serum amyloid A protein 1/3, ultimately inducing Th17 cell differentiation. In addition, through bioinformatic analysis and experimental validation, we identified UC patients with lower FTO expression might respond better to vedolizumab treatment. CONCLUSIONS: FTO downregulation promoted UC by decreasing CerS6 expression, leading to increased S1P accumulation in IECs and aggravating colitis via m6A-dependent mechanisms. Lower FTO expression in UC patients may enhance their response to vedolizumab treatment.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Animales , Ratones , Colitis Ulcerosa/metabolismo , ARN Ribosómico 16S/metabolismo , Mucosa Intestinal/metabolismo , Colitis/inducido químicamente , Colitis/genética , Colon/metabolismo , Esfingolípidos/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
10.
Gut ; 73(10): 1607-1617, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122364

RESUMEN

OBJECTIVE: During the last decade, the management of gastric intestinal metaplasia (GIM) has been addressed by several distinct international evidence-based guidelines. In this review, we aimed to synthesise these guidelines and provide clinicians with a global perspective of the current recommendations for managing patients with GIM, as well as highlight evidence gaps that need to be addressed with future research. DESIGN: We conducted a systematic review of the literature for guidelines and consensus statements published between January 2010 and February 2023 that address the diagnosis and management of GIM. RESULTS: From 426 manuscripts identified, 16 guidelines were assessed. There was consistency across guidelines regarding the purpose of endoscopic surveillance of GIM, which is to identify prevalent neoplastic lesions and stage gastric preneoplastic conditions. The guidelines also agreed that only patients with high-risk GIM phenotypes (eg, corpus-extended GIM, OLGIM stages III/IV, incomplete GIM subtype), persistent refractory Helicobacter pylori infection or first-degree family history of gastric cancer should undergo regular-interval endoscopic surveillance. In contrast, low-risk phenotypes, which comprise most patients with GIM, do not require surveillance. Not all guidelines are aligned on histological staging systems. If surveillance is indicated, most guidelines recommend a 3-year interval, but there is some variability. All guidelines recommend H. pylori eradication as the only non-endoscopic intervention for gastric cancer prevention, while some offer additional recommendations regarding lifestyle modifications. While most guidelines allude to the importance of high-quality endoscopy for endoscopic surveillance, few detail important metrics apart from stating that a systematic gastric biopsy protocol should be followed. Notably, most guidelines comment on the role of endoscopy for gastric cancer screening and detection of gastric precancerous conditions, but with high heterogeneity, limited guidance regarding implementation, and lack of robust evidence. CONCLUSION: Despite heterogeneous populations and practices, international guidelines are generally aligned on the importance of GIM as a precancerous condition and the need for a risk-stratified approach to endoscopic surveillance, as well as H. pylori eradication when present. There is room for harmonisation of guidelines regarding (1) which populations merit index endoscopic screening for gastric cancer and GIM detection/staging; (2) objective metrics for high-quality endoscopy; (3) consensus on the need for histological staging and (4) non-endoscopic interventions for gastric cancer prevention apart from H. pylori eradication alone. Robust studies, ideally in the form of randomised trials, are needed to bridge the ample evidence gaps that exist.


Asunto(s)
Metaplasia , Guías de Práctica Clínica como Asunto , Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Metaplasia/patología , Neoplasias Gástricas/patología , Neoplasias Gástricas/diagnóstico , Lesiones Precancerosas/patología , Lesiones Precancerosas/terapia , Lesiones Precancerosas/diagnóstico , Infecciones por Helicobacter/patología , Infecciones por Helicobacter/diagnóstico , Gastroscopía/métodos , Helicobacter pylori
11.
J Biol Chem ; 299(5): 104658, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997088

RESUMEN

Eukaryotic initiation factor 3d (eIF3d), a known RNA-binding subunit of the eIF3 complex, is a 66 to 68-kDa protein with an RNA-binding motif and a cap-binding domain. Compared with other eIF3 subunits, eIF3d is relatively understudied. However, recent progress in studying eIF3d has revealed a number of intriguing findings on its role in maintaining eIF3 complex integrity, global protein synthesis, and in biological and pathological processes. It has also been reported that eIF3d has noncanonical functions in regulating translation of a subset of mRNAs by binding to 5'-UTRs or interacting with other proteins independent of the eIF3 complex and additional functions in regulating protein stability. The noncanonical regulation of mRNA translation or protein stability may contribute to the role of eIF3d in biological processes such as metabolic stress adaptation and in disease onset and progression including severe acute respiratory syndrome coronavirus 2 infection, tumorigenesis, and acquired immune deficiency syndrome. In this review, we critically evaluate the recent studies on these aspects of eIF3d and assess prospects in understanding the function of eIF3d in regulating protein synthesis and in biological and pathological processes.


Asunto(s)
Progresión de la Enfermedad , Factor 3 de Iniciación Eucariótica , Biosíntesis de Proteínas , Caperuzas de ARN , Humanos , COVID-19 , Factor 3 de Iniciación Eucariótica/metabolismo , Caperuzas de ARN/metabolismo , Síndrome de Inmunodeficiencia Adquirida , Carcinogénesis , Regiones no Traducidas 5'/genética
12.
J Am Chem Soc ; 146(33): 22993-23003, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39110536

RESUMEN

Metal nanoclusters (NCs) have unique properties because of their small size, which makes them useful as catalysts in reactions like cross-coupling. Pd-catalyzed oxidative amination, which involves dehydrogenative C-N bond formation, uses Pd complexes as the active species. It is known that the catalytic conditions involve the formation of Pd(0) species from Pd NCs, but the precise role of Pd NCs in the transformations has not been established. In this study, we investigated the characteristic properties of Pd NCs in oxidative amination of 1,3-dienes. The reaction achieved direct amination of commercially accessible 1,3-dienes with secondary aromatic amines, providing a variety of nitrogen containing 1,3-dienes. The compound was applicable to radical polymerization to provide the nitrogen-fabricated 1,3-diene-based polymer, which exhibited a different thermal stability compared to aliphatic nitrogen-fabricated diene polymers. In addition to the synthetic utility, by combining X-ray absorption fine structure and small-angle X-ray scattering analysis, we revealed amines and 1,3-dienes affected metal leaching from the Pd nanoparticles and stabilization of Pd NCs in the catalytic reaction. Additionally, DFT calculation suggested that the catalytic intermediate contained multiple adjacent Pd atoms and was responsible for formation of an σ-allylic intermediate that is difficult to form with the use of Pd complexes. These results could be used to understand the underlying phenomenon in the oxidative coupling reaction and develop Pd NCs-based dehydrogenation.

13.
Haematologica ; 109(6): 1893-1908, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38124661

RESUMEN

REIIBP is a lysine methyltransferase aberrantly expressed through alternative promoter usage of NSD2 locus in t(4;14)-translocated multiple myeloma (MM). Clinically, t(4;14) translocation is an adverse prognostic factor found in approximately 15% of MM patients. The contribution of REIIBP relative to other NSD2 isoforms as a dependency gene in t(4;14)-translocated MM remains to be evaluated. Here, we demonstrated that despite homology with NSD2, REIIBP displayed distinct substrate specificity by preferentially catalyzing H3K4me3 and H3K27me3, with little activity on H3K36me2. Furthermore, REIIBP was regulated through microRNA by EZH2 in a Dicer-dependent manner, exemplifying a role of REIIBP in SET-mediated H3K27me3. Chromatin immunoprecipitation sequencing revealed chromatin remodeling characterized by changes in genome-wide and loci-specific occupancy of these opposing histone marks, allowing a bidirectional regulation of its target genes. Transcriptomics indicated that REIIBP induced a pro-inflammatory gene signature through upregulation of TLR7, which in turn led to B-cell receptor-independent activation of BTK and driving NFkB-mediated production of cytokines such as IL-6. Activation of this pathway is targetable using Ibrutinib and partially mitigated bortezomib resistance in a REIIBP xenograft model. Mechanistically, REIIBP upregulated TLR7 through eIF3E, and this relied on eIF3E RNA-binding function instead of its canonical protein synthesis activity, as demonstrated by direct binding to the 3'UTR of TLR7 mRNA. Altogether, we provided a rationale that co-existence of different NSD2 isoforms induced diversified oncogenic programs that should be considered in the strategies for t(4;14)-targeted therapy.


Asunto(s)
Cromosomas Humanos Par 14 , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina , Mieloma Múltiple , Translocación Genética , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Ratones , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 4/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Fenotipo , Inflamación/genética , Inflamación/metabolismo , Histonas/metabolismo , Proteínas Represoras
14.
Arch Biochem Biophys ; 761: 110153, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271097

RESUMEN

Myocardial infarction (MI) is the primary source of death in cardiovascular diseases. Myricitrin (MYR) is a phenolic compound known for its antioxidant properties. This study aimed to investigate the impact of MYR alone or combined with exercise on a rat model of MI and its underlying mechanism. Sprague-Dawley rats were randomized into 5 groups: sham-operated (Sham), MI-sedentary (MI-Sed), MI-exercise (MI-Ex), MI-sedentary + MYR (MI-Sed-MYR) and MI-exercise + MYR (MI-Ex-MYR). MI was induced through ligation of left anterior descending coronary artery. The treatment with exercise or MYR (30 mg/kg/d) gavage began one week after surgery, either individually or in combination. After 8 weeks, the rats were assessed for cardiac function. Myocardial injuries were estimated using triphenyltetrazolium chloride, sirius red and Masson staining. Changes in reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), apoptosis and Nrf2/HO-1 pathway were analyzed by ROS kit, JC-1 kit, TUNEL assay, Western blot and immunohistochemistry. Both MYR and exercise treatments improved cardiac function, reduced infarct size, suppressed collagen deposition, and decreased myocardial fibrosis. Additionally, both MYR and exercise treatments lowered ROS production induced by MI, restored ΔΨm, and attenuated oxidative stress and apoptosis in cardiomyocytes. Importantly, the combination of MYR and exercise showed greater efficacy compared to individual treatments. Mechanistically, the combined intervention activated the Nrf2/HO-1 signaling pathway. These findings suggest that the synergistic effect of MYR and exercise may offer a promising therapeutic approach for alleviating MI.

15.
Anal Biochem ; 694: 115637, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39121938

RESUMEN

Accurate identifications of protein-peptide binding residues are essential for protein-peptide interactions and advancing drug discovery. To address this problem, extensive research efforts have been made to design more discriminative feature representations. However, extracting these explicit features usually depend on third-party tools, resulting in low computational efficacy and suffering from low predictive performance. In this study, we design an end-to-end deep learning-based method, E2EPep, for protein-peptide binding residue prediction using protein sequence only. E2EPep first employs and fine-tunes two state-of-the-art pre-trained protein language models that can extract two different high-latent feature representations from protein sequences relevant for protein structures and functions. A novel feature fusion module is then designed in E2EPep to fuse and optimize the above two feature representations of binding residues. In addition, we have also design E2EPep+, which integrates E2EPep and PepBCL models, to improve the prediction performance. Experimental results on two independent testing data sets demonstrate that E2EPep and E2EPep + could achieve the average AUC values of 0.846 and 0.842 while achieving an average Matthew's correlation coefficient value that is significantly higher than that of existing most of sequence-based methods and comparable to that of the state-of-the-art structure-based predictors. Detailed data analysis shows that the primary strength of E2EPep lies in the effectiveness of feature representation using cross-attention mechanism to fuse the embeddings generated by two fine-tuned protein language models. The standalone package of E2EPep and E2EPep + can be obtained at https://github.com/ckx259/E2EPep.git for academic use only.


Asunto(s)
Péptidos , Unión Proteica , Proteínas , Proteínas/química , Proteínas/metabolismo , Péptidos/química , Péptidos/metabolismo , Aprendizaje Profundo , Sitios de Unión , Bases de Datos de Proteínas , Biología Computacional/métodos
16.
Eur Radiol ; 34(3): 1994-2005, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37658884

RESUMEN

OBJECTIVES: To develop a computed tomography (CT) radiomics-based interpretable machine learning (ML) model to predict the pathological grade of pancreatic neuroendocrine tumors (pNETs) in a non-invasive manner. METHODS: Patients with pNETs who underwent contrast-enhanced abdominal CT between 2010 and 2022 were included in this retrospective study. Radiomics features were extracted, and five radiomics-based ML models, namely logistic regression (LR), random forest (RF), support vector machine (SVM), XGBoost, and GaussianNB, were developed. The performance of these models was evaluated using a time-independent testing set, and metrics such as sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC) were calculated. The accuracy of the radiomics model was compared to that of needle biopsy. The Shapley Additive Explanation (SHAP) tool and the correlation between radiomics and biological features were employed to explore the interpretability of the model. RESULTS: A total of 122 patients (mean age: 50 ± 14 years; 53 male) were included in the training set, whereas 100 patients (mean age: 48 ± 13 years; 50 male) were included in the testing set. The AUCs for LR, SVM, RF, XGBoost, and GaussianNB were 0.758, 0.742, 0.779, 0.744, and 0.745, respectively, with corresponding accuracies of 73.0%, 70.0%, 77.0%, 71.9%, and 72.9%. The SHAP tool identified two features of the venous phase as the most significant, which showed significant differences among the Ki-67 index or mitotic count subgroups (p < 0.001). CONCLUSIONS: An interpretable radiomics-based RF model can effectively differentiate between G1 and G2/3 of pNETs, demonstrating favorable interpretability. CLINICAL RELEVANCE STATEMENT: The radiomics-based interpretable model developed in this study has significant clinical relevance as it offers a non-invasive method for assessing the pathological grade of pancreatic neuroendocrine tumors and holds promise as an important complementary tool to traditional tissue biopsy. KEY POINTS: • A radiomics-based interpretable model was developed to predict the pathological grade of pNETs and compared with preoperative needle biopsy in terms of accuracy. • The model, based on CT radiomics, demonstrated favorable interpretability. • The radiomics model holds potential as a valuable complementary technique to preoperative needle biopsy; however, it should not be considered a replacement for biopsy.


Asunto(s)
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Masculino , Adulto , Persona de Mediana Edad , Tumores Neuroendocrinos/diagnóstico por imagen , Radiómica , Estudios Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagen
17.
J Org Chem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720168

RESUMEN

Tracking carboxylesterases (CESs) through noninvasive and dynamic imaging is of great significance for diagnosing and treating CES-related metabolic diseases. Herein, three BODIPY-based fluorescent probes with a pyridine unit quaternarized via an acetoxybenzyl group were designed and synthesized to detect CESs based on the photoinduced electron transfer process. Notably, among these probes, BDPN2-CES exhibited a remarkable 182-fold fluorescence enhancement for CESs within 10 min. Moreover, BDPN2-CES successfully enabled real-time imaging of endogenous CES variations in living cells. Using BDPN2-CES, a visual high-throughput screening method for CES inhibitors was established, culminating in the discovery of an efficient inhibitor, WZU-13, sourced from a chemical library. These findings suggest that BDPN2-CES could provide a new avenue for diagnosing CES-related diseases, and WZU-13 emerges as a promising therapeutic candidate for CES-overexpression pathological processes.

18.
Helicobacter ; 29(1): e13039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38036941

RESUMEN

BACKGROUND: Recent clinical trials have evaluated the efficacy of vonoprazan-amoxicillin (VA) dual therapy as the first-line treatment for Helicobacter pylori infection in different regions with inconsistent results reported. In this systematic review and meta-analysis, we aimed to evaluate the efficacy of VA dual therapy compared to the currently recommended therapy for eradicating H. pylori. MATERIALS AND METHODS: A comprehensive search of the PubMed, Cochrane, and Embase databases was performed using the following search terms: ("Helicobacter" OR "H. pylori" OR "Hp") AND ("vonoprazan" OR "potassium-competitive acid blocker" OR "P-CAB") AND ("amoxicillin" OR "penicillin") AND ("dual"). The primary outcome was to evaluate the eradication rate according to intention-to-treat and per-protocol analysis. The secondary outcomes were adverse events and compliance. RESULTS: A total of 15 studies involving 4, 568 patients were included. The pooled eradication rate of VA dual therapy was 85.0% and 90.0% by intention-to-treat and per-protocol analysis, respectively. The adverse events rate and compliance of VA dual therapy were 17.5% and 96%, respectively. The efficacy of VA dual therapy was superior to proton pump inhibitors-based triple therapy (82.0% vs. 71.4%, p < 0.01) but lower than vonoprazan-containing quadruple therapy (83.1% vs. 93.3%, p = 0.02). 7-day VA dual therapy showed lower eradication rates than 10-day (χ2 = 24.09, p < 0.01) and 14-day VA dual therapy (χ2 = 11.87, p < 0.01). The adverse events rate of VA dual therapy was lower than vonoprazan triple therapy (24.6% vs. 30.9%, p = 0.01) and bismuth-containing quadruple therapy (20.5% vs. 47.9%, p < 0.01). No significant difference of compliance was observed between VA dual therapy and each subgroup. CONCLUSION: VA dual therapy, a novel regimen, showed high efficacy as the first-line treatment for H. pylori eradication, which should be optimized before application in different regions.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Amoxicilina , Antibacterianos/uso terapéutico , Quimioterapia Combinada , Infecciones por Helicobacter/tratamiento farmacológico , Inhibidores de la Bomba de Protones , Resultado del Tratamiento
19.
Inorg Chem ; 63(17): 7780-7791, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38625744

RESUMEN

Pharmacosiderite Mo4P3O16 (Pharma-MoPO) consists of [Mo4O4] cubane unit and [PO4] tetrahedral to form an open framework with a microporous structure similar to that of LTA-type zeolite. Although attractive applications are expected due to its microporous structure and redox-active components, its physicochemical properties have been poorly investigated due to the specificity of its synthesis, which requires a high hydrothermal synthesis temperature of 360 °C. In this study, we succeeded in synthesizing Pharma-MoPO by hydrothermal synthesis at 230 °C, which can be applied using a commercially available autoclave by changing the metal source. Through the study of the solids and liquids obtained after hydrothermal syntheses, the formation process of Pharma-MoPO under our studied synthesis conditions was proposed. Advanced characterizations provided detailed structural information on Pharma-MoPO, including the location site of a countercation NH4+. Pharma-MoPO could adsorb CO2 with the amount close to the number of cages without removing NH4+. Pharma-MoPO exhibited stable catalytic activity for the hydrodesulfurization of thiophene while maintaining its crystal structure, except for the introduction of sulfide by replacing lattice oxygens. Pharmacosiderite Mo4P3O16 was successfully obtained by hydrothermal synthesis at a moderate temperature, and its microporosity for CO2 adsorption and catalytic properties for hydrodesulfurization were discovered.

20.
J Fluoresc ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252217

RESUMEN

A novel multi-functional fluorescence probe HMIC based on hydrazide Schiff base has been successfully synthesized and characterized. It can distinguish Al3+/Zn2+/Cd2+ in ethanol, in which fluorescence emission with different colors (blue for Al3+, orange for Zn2+, and green for Cd2+) were presented. The limits of detection of HMIC towards three ions were calculated from the titration curve as 7.70 × 10- 9 M, 4.64 × 10- 9 M, and 1.35 × 10- 8 M, respectively. The structures of HMIC and its complexes were investigated using UV-Vis spectra, Job's plot, infrared spectra, mass spectrometry, 1H-NMR and DFT calculations. Practical application studies have also demonstrated that HMIC can be applied to real samples with a low impact of potential interferents. Cytotoxicity and cellular imaging assays have shown that HMIC has good cellular permeability and potential antitumor effects. Interestingly, HMIC can image Al3+, Zn2+ and Cd2+ in the cells with different fluorescence signals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA