RESUMEN
BACKGROUND: The foot-and-mouth disease (FMD) virus is classified into seven serotypes, of which the South African types have South African Territories (SAT)1, SAT2, and SAT3 that are prevalent in Africa. Especially SAT2 have spread to Arabian Peninsula and the Palestinian Autonomous Territories. Of these viruses, the incidence of SAT2 is the highest. It is important to prepare for the spread of the virus to other continents, even though most FMD viruses are bovine-derived. In particular, due to the high breeding density of pigs in Asia, more attention is usually paid to the immunity and protection of pigs than cattle. For this reason, this study investigated the immunity and protection of pigs against the SAT viruses. METHODS: Specific vaccines were developed for SAT1, SAT2, and SAT3 serotypes. These vaccine viruses were designed to be distinguished from the wild-type strain. An immunogenicity test was conducted using these vaccines in both cattle (n = 5/group) and pigs (n = 20/group). RESULTS: High virus-neutralizing titer of antibodies (> 1:100) was induced in only 2 weeks after the immunization of cattle with the individual vaccine for SAT1, SAT2 or SAT3, and a clear immune response was induced after the second immunization in pigs. When the vaccinated pigs (n = 4-5/group) were challenged by the homologous wild-type virus strain 4 weeks after immunization, all the pigs were protected from the challenge. CONCLUSIONS: This study confirmed that these vaccines can be used against SAT1, SAT2, and SAT3 viruses in cattle and pigs. The vaccine strains developed in this study are expected to be used as vaccines that can protect against FMD in the event of a future FMD outbreak in pigs in consideration of the situation in Asia.
Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Bovinos , Enfermedades de los Bovinos/prevención & control , Virus de la Fiebre Aftosa/clasificación , Serogrupo , Porcinos , Resultado del Tratamiento , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Marcadoras/administración & dosificación , Vacunas Marcadoras/inmunologíaRESUMEN
Vaccination prevents and controls foot-and-mouth disease (FMD). However, the current FMD vaccine remains disadvantageous since it cannot overcome maternally-derived antibody (MDA) interference in weeks-old animals, which suppress active immunity via vaccination. To address this, we developed the immune-enhancing O PA2-C3d and A22-C3d FMD vaccine strains that can stimulate receptors on the surface of B cells by inserting C3d (a B cell epitope) into the VP1 region of O PA2 (FMDV type O) and A22 (FMDV type A). We purified inactivated viral antigens from these vaccine strains and evaluated their immunogenicity and host defense against FMDV infection in mice. We also verified its efficacy in inducing an adaptive immune response and overcome MDA interference in MDA-positive (MDA(+), FMD-seropositive) and -negative (MDA(-), FMD-seronegative) pigs. These results suggest a key strategy for establishing novel FMD vaccine platform to overcome MDA interference and induce a robust adaptive immune response.
RESUMEN
Current foot-and-mouth disease (FMD) vaccines have significant limitations, including side effects due to oil emulsions at the vaccination site, a narrow spectrum of protective efficacy, and incomplete host defenses mediated by humoral immunity alone. To overcome these limitations, new FMD vaccines must ensure improved safety with non-oil-based adjuvants, a broad spectrum of host defenses within/between serotypes, and the simultaneous induction of cellular and humoral immunity. We designed a novel, immune-potent, recombinant protein rpHSP70-AD that induces robust cellular immunity and elicits a broad spectrum of host defenses against FMD virus (FMDV) infections. We demonstrated that an oil emulsion-free vaccine containing rpHSP70-AD mediates early, mid-term, and long-term immunity and drives potent host protection against FMDV type O and A, suggesting its potential as an FMD vaccine adjuvant in mice and pigs. These results suggest a key strategy for establishing next-generation FMD vaccines, including novel adjuvants.
RESUMEN
The type Asia1 genetic group(G)-V lineage foot-and-mouth disease (FMD) virus was identified in the East-Asian region in 2009. To date, only Shamir has been used as a standard vaccine strain worldwide for type Asia1. To prevent type Asia1 FMD in eastern Asia, two vaccine strains (ASM-R: G-V and ASM-SM: G-V/Shamir fusion) were developed and tested against type Asia1 virus strains. After immunization with the two experimental vaccines, the ASM-SM strain showed a higher level of protection against Shamir virus in mice. Additional immunogenicity tests were carried out in cattle and pigs, revealing sufficient antibody production capable of protecting the animals against the viral challenge. In cattle, the immune response started just 2 weeks after vaccination. Immunogenicity was lower in pigs, but antibody production was greatly increased to a high level after a second vaccination round. In particular, herein, 60 % and 100 % of the vaccinated pigs challenged with the Asia1 Shamir virus were determined to be clinically protected after one and two vaccination rounds with ASM-R, respectively. Pigs vaccinated twice produced sufficient antibody titers with low virus shedding for short time. Moreover, ASM-SM single-vaccinated pigs showed 100 % protection when challenged with the Asia1 Shamir virus. In summary, the vaccine strain ASM-SM designed for the defense of the Asian region efficiently granted protection to pigs against the typical Asia1 virus, Shamir.
Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedades de los Bovinos/prevención & control , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/genética , Animales , Anticuerpos Antivirales/inmunología , Bovinos , Enfermedades de los Bovinos/virología , Asia Oriental , Femenino , Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/genética , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos C57BL , Porcinos , Enfermedades de los Porcinos/virología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Esparcimiento de VirusRESUMEN
Foot-and-mouth disease (FMD) is a notifiable contagious disease of cloven-hoofed mammals. A high potency vaccine that stimulates the host immune response is the foremost strategy used to prevent disease persistence in endemic regions. FMD vaccines comprise inactivated virus antigens whose immunogenicity is potentiated by immunogenic adjuvants. Oil-based adjuvants have clear advantages over traditional adjuvant vaccines; however, there is potential to develop novel adjuvants to increase the potency of FMD vaccines. Thus, we aimed to evaluate the efficacy of a novel water-in-oil emulsion, called CAvant®SOE, as a novel vaccine adjuvant for use with inactivated FMD vaccines. In this study, we found that inactivated A22 Iraq virus plus CAvant®SOE (iA22 Iraq-CAvant®SOE) induced effective antigen-specific humoral (IgG, IgG1, and IgG2a) and cell-mediated immune responses (IFN-γ and IL-4) in mice. Immunization of pigs with a single dose of iA22 Iraq-CAvant®SOE also elicited effective protection, with no detectable clinical symptoms against challenge with heterologous A/SKR/GP/2018 FMDV. Levels of protection are strongly in line with vaccine-induced neutralizing antibody titers. Collectively, these results indicate that CAvant®SOE-adjuvanted vaccine is a promising candidate for control of FMD in pigs.
RESUMEN
Currently available commercial foot-and-mouth disease (FMD) vaccines have various limitations, such as the slow induction and short-term maintenance of antibody titers. Therefore, a novel FMD vaccine that can rapidly induce high neutralizing antibody titers to protect the host in early stages of an FMD virus infection, maintain high antibody titers for long periods after one vaccination dose, and confer full protection against clinical symptoms by simultaneously stimulating cellular and humoral immunity is needed. Here, we developed immunopotent FMD vaccine strains A-3A and A-HSP70, which elicit strong initial cellular immune response and induce humoral immune response, including long-lasting memory response. We purified the antigen (inactivated virus) derived from these immunopotent vaccine strains, and evaluated the immunogenicity and efficacy of the vaccines containing these antigens in mice and pigs. The immunopotent vaccine strains A-3A and A-HSP70 demonstrated superior immunogenicity compared with the A strain (backbone strain) in mice. The oil emulsion-free vaccine containing A-3A and A-HSP70 antigens effectively induced early, mid-term, and long-term immunity in mice and pigs by eliciting robust cellular and humoral immune responses through the activation of co-stimulatory molecules and the secretion of proinflammatory cytokines. We successfully derived an innovative FMD vaccine formulation to create more effective FMD vaccines.
RESUMEN
Efforts are required to develop foot-and-mouth disease (FMD) vaccines in Asia that can respond to the type O outbreaks that have continued with the devastating damage since 2010. It is necessary to develop vaccine strains that can provide protection against the ME-SA topotype, which has tended to spread into neighboring areas, and the frequent SEA topotype outbreaks. To this end, this study aimed to develop a FMD vaccine utilizing O PanAsia-2 that is able to provide broad protection against ME-SA as the vaccine strain, with a focus on the O/Jincheon/SKR/2014 virus (SEA topotype), the outbreaks of which have persisted in spite of the enforcement of FMD vaccination. The virus neutralizing antibody (VN) titer to the ME-SA topotype (especially, Ind2001 lineage) virus in pigs was the highest, followed by SEA, while the VN titers to the Cathay and EURO-SA topotypes were similar. In the O/Jincheon/SKR/2014 virus challenge test, all pigs were protected against the virus, and almost no virus shedding was detected after the virus challenge. In the immunization test performed on cattle and pigs, antibodies with sufficient protective activity were produced in cattle two weeks after the first immunization, and pigs exhibited lower immunity compared to cattle. However, immunity was improved enough in pigs to provide protection against the virus challenge after the second immunization, with a significant increase in antibody production.
Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Enfermedades de los Porcinos , Vacunas Virales , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Bovinos , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/inmunología , Inmunogenicidad Vacunal , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunologíaRESUMEN
Newly developed vaccine strains to prevent foot-and-mouth disease caused by the emerging serotype Asia1 virus were evaluated. To protect against the group (G)-VIII strain, which occurred recently, we produced an infectious cDNA clone of Asia1 Shamir cDNA (Asia1 Shamir-R). In addition, by adding a site 1 epitope of VP1 of the G-VIII lineage virus to this virus, we produced a new virus (Sham GVIII- EPI), and another virus(Sham GVIII-VP1) was replaced with that of G-VIII lineage in the VP1 region of Shamir. Test vaccines were produced using these three types of vaccine virus, and their immunogenicity and protection capabilities were evaluated in mice. Immunized mice were challenged with the Asia1 Shamir or G-VIII virus, and the results show that all the vaccines have similar protective effects. As they showed similar antigenicity, we chose the Shamir-R vaccine. Pigs maintained relatively high neutralizing antibody levels against homologous viruses of the Shamir and G-VII or G-VIII lineage three to four weeks after immunization. However, they formed relatively low levels of antibodies to G-IV and G-V viruses. In conclusion, we produced a vaccine candidate capable of protection against the G-VIII virus in the vaccine experiment for the type Asia1 serotype vaccine. This Shamir-R vaccine virus was found to protect against the viruses of the Asia1 genotype G-VII and G-VIII lineages, which occurred recently in Asia.
Asunto(s)
Anticuerpos Neutralizantes/sangre , Antígenos Virales/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Animales , Asia , Proteínas de la Cápside/inmunología , Epítopos/inmunología , Femenino , Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/clasificación , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos C57BL , Serogrupo , Porcinos , Enfermedades de los Porcinos/virología , VacunaciónRESUMEN
BACKGROUND: The quality of a vaccine depends strongly on the effects of the adjuvants applied simultaneously with the antigen in the vaccine. The adjuvants enhance the protective effect of the vaccine against a viral challenge. Conversely, oil-type adjuvants leave oil residue inside the bodies of the injected animals that can produce a local reaction in the muscle. The long-term immunogenicity of mice after vaccination was examined. ISA206 or ISA15 oil adjuvants maintained the best immunity, protective capability, and safety among the oil adjuvants in the experimental group. OBJECTIVES: This study screened the adjuvant composites aimed at enhancing foot-and-mouth disease (FMD) immunity. The C-type lectin or toll-like receptor (TLR) agonist showed the most improved protection rate. METHODS: Experimental vaccines were fabricated by mixing various known oil adjuvants and composites that can act as immunogenic adjuvants (gel, saponin, and other components) and examined the enhancement effect on the vaccine. RESULTS: The water in oil (W/O) and water in oil in water (W/O/W) adjuvants showed better immune effects than the oil in water (O/W) adjuvants, which have a small volume of oil component. The W/O type left the largest amount of oil residue, followed by W/O/W and O/W types. In the mouse model, intramuscular inoculation showed a better protection rate than subcutaneous inoculation. Moreover, the protective effect was particularly weak in the case of inoculation in fatty tissue. The initial immune reaction and persistence of long-term immunity were also confirmed in an immune reaction on pigs. CONCLUSIONS: The new experimental vaccine with immunostimulants produces improved immune responses and safety in pigs than general oil-adjuvanted vaccines.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria , Vacunas Virales/farmacología , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Ratones , Ratones Endogámicos C57BL , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunas Virales/inmunologíaRESUMEN
Conventional foot-and-mouth disease (FMD) vaccines exhibit several limitations, such as the slow induction of antibodies, short-term persistence of antibody titers, as well as low vaccine efficacy and safety, in pigs. Despite the importance of cellular immune response in host defense at the early stages of foot-and-mouth disease virus (FMDV) infection, most FMD vaccines focus on humoral immune response. Antibody response alone is insufficient to provide full protection against FMDV infection; cellular immunity is also required. Therefore, it is necessary to design a strategy for developing a novel FMD vaccine that induces a more potent, cellular immune response and a long-lasting humoral immune response that is also safe. Previously, we demonstrated the potential of various pattern recognition receptor (PRR) ligands and cytokines as adjuvants for the FMD vaccine. Based on these results, we investigated PRR ligands and cytokines adjuvant-mediated memory response in mice. Additionally, we also investigated cellular immune response in peripheral blood mononuclear cells (PBMCs) isolated from cattle and pigs. We further evaluated target-specific adjuvants, including Mincle, STING, TLR-7/8, and Dectin-1/2 ligand, for their role in generating ligand-mediated and long-lasting memory responses in cattle and pigs. The combination of Mincle and STING-stimulating ligands, such as trehalose-6, 6'dibehenate (TDB), and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), induced high levels of antigen-specific and virus-neutralizing antibody titers at the early stages of vaccination and maintained a long-lasting immune memory response in pigs. These findings are expected to provide important clues for the development of a robust FMD vaccine that stimulates both cellular and humoral immune responses, which would elicit a long-lasting, effective immune response, and address the limitations seen in the current FMD vaccine.
Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Fiebre Aftosa/metabolismo , Inmunidad Celular , Memoria Inmunológica , Proteínas de la Membrana/metabolismo , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Biomarcadores , Bovinos , Proliferación Celular , Citocinas/metabolismo , Fiebre Aftosa/virología , Inmunofenotipificación , Ratones , Porcinos , VacunaciónRESUMEN
Foot-and-mouth disease (FMD) is an acute infectious disease occurring in cloven-hoofed animals. There are many variations of the virus, making it difficult to protect against the various strains with one virus vaccine. The immunogenicity has generally been evaluated in pigs using neutralizing antibodies to determine the protection level against foot-and-mouth disease virus type O. Therefore, the vaccine from the chimeric vaccine strain of ME-SA (VP4, VP2, and VP3) and SEA (VP1) topotypes developed in this study is expected to be able to protect with high neutralizing antibody titers against most of the eight FMD viruses of the four different topotypes (ME-SA, SEA, Cathay, and EURO-SA) of type O in pigs. This is a new technique for powerful vaccine development, with multiple preventive roles against various epidemic FMD strains.
Asunto(s)
Virus de la Fiebre Aftosa/clasificación , Fiebre Aftosa/prevención & control , Vacunas Virales/inmunología , Animales , Proteínas Recombinantes/inmunología , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virologíaRESUMEN
Foot-and-mouth disease (FMD) is an acute epidemic that spreads rapidly among cattle and pigs. In 2014, in Korea, despite enforced vaccination, the type O Southeast Asia (SEA) topotype viruses (Mya-98 lineage) infected mainly cattle and pigs simultaneously, thereby causing enormous damage. If a vaccine that is completely protective against this FMD virus is developed and used, it can become a very important preventive measure in Asia, which is where this type of virus mainly circulates. The SEA topotype has been steadily evolving and transforming into new variations since it became epidemic in Asia. Therefore, it became necessary to develop a new vaccine that could provide protection against the FMD virus strain that was responsible for the 2014-2015 outbreak in Korea. This study aimed to develop a vaccine that would provide complete protection against the SEA topotype FMD virus to control sporadic FMD outbreaks, which occur despite the enforcement of vaccination, and to completely prevent virus shedding, thereby preventing the virus from spreading. The vaccine candidate virus developed in this study showed low pathogenicity and can be distinguished from the wild-type FMD virus strain. The developed vaccine was able to protect mice from SEA and Middle East-South Asia topotype virus strains and induced high titers of antibodies against both virus strains in pigs, thereby confirming the sufficiency of its protective function. In particular, the results of the SEA topotype virus challenge test in pigs revealed that perfect immunity was created in the vaccinated pigs, without virus shedding and viremia.
Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/farmacología , Animales , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , República de Corea , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virologíaRESUMEN
Foot-and-mouth disease (FMD) is a highly contagious disease and causes economic damage at a national level. In particular, the type O FMD virus (FMDV) is a serotype that causes FMD outbreaks most frequently in the world. In recent years, Southeast Asia (SEA), Middle East-South Asia (ME-SA), and Cathay topotype-mediated FMD are prevalent in Asia, among which the SEA and ME-SA topotypes cause a majority of the outbreaks. The SEA topotype virus is more likely to infect both cattle and pigs simultaneously, thereby resulting in more severe damages; thus, it is necessary to study the protection ability of the candidate vaccines of this topotype after immunization. In this study, an experimental vaccine for pigs was produced using a vaccine strain that contains the structural protein of the O Taiwan97 strain, which was derived from the Cathay topotype, and its effect was evaluated. In the immunization test in pigs and cattle, the antibody titers were found to be elevated two weeks after immunization and very high titers of neutralizing antibodies were formed after four weeks. After the second inoculation, very high titers of neutralizing antibodies were produced in both species in the fourth week after immunization, and the antibodies maintained for up to six months and three months in cattle and pigs, respectively. No significant immunological difference in antibody production was observed in cattle and pigs. This study confirmed that complete protection from the challenge of the SEA topotype virus (O/Jincheon/SKR/2014), although the antibody titers against O/Jincheon/SKR/2014 strain were not that high, was achieved through immunization with the newly developed Cathay topotype vaccine in pigs.
Asunto(s)
Virus de la Fiebre Aftosa/clasificación , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Fiebre Aftosa/epidemiología , Fiebre Aftosa/virología , Ratones , Ratones Endogámicos ICR , República de Corea/epidemiología , Porcinos , Enfermedades de los Porcinos/virología , Esparcimiento de VirusRESUMEN
Human immunodeficiency virus-1 (HIV-1) transactivator of transcription (Tat) is an important viral factor in neuroinflammation. Hindsiipropane B, present in Celastrus hindsii, possesses various biological mechanisms including antiinflammatory activity. In this report, we explored the regulatory activity of hindsiipropane B on HIV-1 Tat-mediated chemokine production and its mode of action in astrocytes. Hindsiipropane B significantly alleviated HIV-1 Tat-mediated production of inflammatory chemokines, CCL2, CXCL8, and CXCL10. Hindsiipropane B inhibited expression of HDAC6, which is important regulator in HIV-1 Tat-mediated chemokine production. Hindsiipropane B diminished HIV-1 Tat-mediated reactive oxygen species (ROS) generation and NADPH oxidase activation/expression. Furthermore, hindsiipropane B inhibited HIV-1 Tat-mediated signaling cascades including MAPK, NF-κB, and AP-1. These data suggest that hindsiipropane B exerts its inhibitory effects on HIV-1 Tat-mediated chemokine production via down-regulating the HDAC6-NADPH oxidase-MAPK-NF-κB/AP-1 signaling axis, and could serve as a therapeutic lead compound against HIV-1 Tat-associated neuroinflammation. [BMB Reports 2018; 51(8): 394-399].