Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 119(4): 1685-1702, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38935838

RESUMEN

This review explores the integration of wild grass-derived alleles into modern bread wheat breeding to tackle the challenges of climate change and increasing food demand. With a focus on synthetic hexaploid wheat, this review highlights the potential of genetic variability in wheat wild relatives, particularly Aegilops tauschii, for improving resilience to multifactorial stresses like drought, heat, and salinity. The evolutionary journey of wheat (Triticum spp.) from diploid to hexaploid species is examined, revealing significant genetic contributions from wild grasses. We also emphasize the importance of understanding incomplete lineage sorting in the genomic evolution of wheat. Grasping this information is crucial as it can guide breeders in selecting the appropriate alleles from the gene pool of wild relatives to incorporate into modern wheat varieties. This approach improves the precision of phylogenetic relationships and increases the overall effectiveness of breeding strategies. This review also addresses the challenges in utilizing the wheat wild genetic resources, such as the linkage drag and cross-compatibility issues. Finally, we culminate the review with future perspectives, advocating for a combined approach of high-throughput phenotyping tools and advanced genomic techniques to comprehensively understand the genetic and regulatory architectures of wheat under stress conditions, paving the way for more precise and efficient breeding strategies.


Asunto(s)
Alelos , Fitomejoramiento , Estrés Fisiológico , Triticum , Triticum/genética , Triticum/fisiología , Fitomejoramiento/métodos , Estrés Fisiológico/genética , Genoma de Planta/genética , Poaceae/genética , Poaceae/fisiología , Aegilops/genética , Variación Genética , Poliploidía , Filogenia
2.
Fungal Genet Biol ; 170: 103860, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38114016

RESUMEN

Fusarium oxysporum f. sp. cepae (Foc) is the causative agent of Fusarium basal rot disease in onions, which leads to catastrophic global crop production losses. Therefore, the interaction of Foc with its host has been actively investigated, and the pathogen-specific (PS) regions of the British strain Foc_FUS2 have been identified. However, it has not been experimentally determined whether the identified PS region plays a role in pathogenicity. To identify the pathogenicity chromosome in the Japanese strain Foc_TA, we initially screened effector candidates, defined as small proteins with a signal peptide that contain two or more cysteines, from genome sequence data. Twenty-one candidate effectors were identified, five of which were expressed during infection. Of the expressed effector candidates, four were located on the 4-Mb-sized chromosome in Foc_TA. To clarify the relationship between pathogenicity and the 4-Mb-sized chromosome in Foc_TA, nine putative 4-Mb-sized chromosome loss strains were generated by treatment with benomyl (a mitotic inhibitor drug). A pathogenicity test with putative 4-Mb-sized chromosome loss strains showed that these strains were impaired in their pathogenicity toward onions. Genome analysis of three putative 4-Mb-sized chromosome loss strains revealed that two strains lost a 4-Mb-sized chromosome in common, and another strain maintained a 0.9-Mb region of the 4-Mb-sized chromosome. Our findings show that the 4-Mb-sized chromosome is the pathogenicity chromosome in Foc_TA, and the 3.1-Mb region within the 4-Mb-sized chromosome is required for full pathogenicity toward onion.


Asunto(s)
Fusarium , Virulencia/genética , Fusarium/genética , Cromosomas , Enfermedades de las Plantas/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38935113

RESUMEN

Bio-inspired zinc oxide nanoparticles are gaining immense interest due to their safety, low cost, biocompatibility, and broad biological properties. In recent years, much research has been focused on plant-based nanoparticles, mainly for their eco-friendly, facile, and non-toxic character. Hence, the current study emphasized a bottom-up synthesis of zinc oxide nanoparticles (ZnO NPs) from Psidium guajava aqueous leaf extract and evaluation of its biological properties. The structural characteristic features of biosynthesized ZnO NPs were confirmed using various analytical methods, such as UV-Vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM). The synthesized ZnO NPs exhibited a hydrodynamic shape with an average particle size of 11.6-80.2 nm. A significant antimicrobial efficiency with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 40 and 27 µg/ml for Enterococcus faecalis, followed by 30 and 40 µg/ml for Staphylococcus aureus, 20 and 30 µg/ml for Staphylococcus mutans, 30 µg/ml for Candida albicans was observed by ZnO NPs. Additionally, they showed significant breakdown of biofilms of Streptococcus mutans and Candida albicans indicating their future value in drug-resistance research. Furthermore, an excellent dose-dependent activity of antioxidant property was noticed with an IC50 of 9.89 µg/ml. The antiproliferative potential of the ZnO NPs was indicated by the viability of MDA MB 231 cells, which showed a drastic decrease in response to increased concentrations of biosynthesized ZnO NPs. Thus, the present results open up vistas to explore their pharmaceutical potential for the development of targeted anticancer drugs in the future.

4.
Environ Geochem Health ; 46(4): 114, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478180

RESUMEN

Imidacloprid (IMD), a neonicotinoid insecticide, is intensively used in agricultural fields for effective protection against aphids, cane beetles, thrips, stink bugs, locusts, etc., is causing serious environmental concerns. In recent years, seed treatment with Imidacloprid is being practiced mainly to prevent sucking insect pests. In India, due to the increase in application of this insecticide residue has been proven to have an impact on the quality of soil and water. In view of this, the current investigation is focussed on sustainable approach to minimize the residual effect of IMD in agricultural fields. The present study reveals a most promising imidacloprid resistant bacterium Lysinibacillus fusiformis IMD-Bio5 strain isolated from insecticide-contaminated soil. The isolated bacterial strain upon tested for its biodegradation potential on mineral salt medium (MSM) showed a significant survival growth at 150 g/L of IMD achieved after 3 days, whereas immobilized cells on MSM amended with 200 g/L of IMD as the sole carbon source provided degradation of 188 and 180 g/L of IMD in silica beads and sponge matrices, respectively. The liquid chromatography mass spectrometry was performed to test the metabolite responsive for IMD biodegradation potential of L. fusiformis IMD-Bio5 which showed the induced activity of the metabolite 6-Chloronicotinic acid. Furthermore, as compared to the untreated control, the Lysinibacillus fusiformis IMD-Bio5 protein profile revealed a range of patterns showing the expression of stress enzymes. Thus, results provided a most effective bacterium enabling the removal of IMD-like hazardous contaminants from the environment, which contributes to better agricultural production and soil quality, while long-term environmental advantages are restored.


Asunto(s)
Bacillaceae , Insecticidas , Nitrocompuestos , Insecticidas/análisis , Proteínas de Choque Térmico , Imidazoles/análisis , Imidazoles/química , Imidazoles/metabolismo , Neonicotinoides , Suelo/química
5.
Semin Cancer Biol ; 86(Pt 2): 1179-1189, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34302959

RESUMEN

Gynecologic cancers, starting in the reproductive organs of females, include cancer of cervix, endometrium, ovary commonly and vagina and vulva rarely. The changes in the composition of microbiome in gut and vagina affect immune and metabolic signaling of the host cells resulting in chronic inflammation, angiogenesis, cellular proliferation, genome instability, epithelial barrier breach and metabolic dysregulation that may lead to the onset or aggravated progression of gynecologic cancers. While microbiome in gynecologic cancers is just at horizon, certain significant microbiome signature associations have been found. Cervical cancer is accompanied with high loads of human papillomavirus, Fusobacteria and Sneathia species; endometrial cancer is reported to have presence of Atopobium vaginae and Porphyromonas species and significantly elevated levels of Proteobacteria and Firmicutes phylum bacteria, with Chlamydia trachomatis, Lactobacillus and Mycobacterium reported in ovarian cancer. Balancing microbiome composition in gynecologic cancers has the potential to be used as a therapeutic target. For example, the Lactobacillus species may play an important role in blocking adhesions of incursive pathogens to vaginal epithelium by lowering the pH, producing bacteriocins and employing competitive exclusions. The optimum or personalized balance of the microbiota can be maintained using pre- and probiotics, and fecal microbiota transplantations loaded with specific bacteria. Current evidence strongly suggest that a healthy microbiome can train and trigger the body's immune response to attack various gynecologic cancers. Furthermore, microbiome modulations can potentially contribute to improvements in immuno-oncology therapies.


Asunto(s)
Neoplasias de los Genitales Femeninos , Microbiota , Probióticos , Humanos , Femenino , Vagina/microbiología , Lactobacillus , Microbiota/genética , Neoplasias de los Genitales Femeninos/etiología , Neoplasias de los Genitales Femeninos/terapia , Probióticos/uso terapéutico
6.
Environ Res ; 237(Pt 2): 117017, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652220

RESUMEN

In recent times, the herbicide atrazine (ATZ) has been commonly used before and after the cultivation of crop plants to manage grassy weeds. Despite its effect, the toxic residues of ATZ affect soil fertility and crop yield. Hence, the current study is focused on providing insight into the degradation mechanism of the herbicide atrazine through bacterial chemotaxis involving intermediates responsive to degradation. A bacterium was isolated from ATZ-contaminated soil and identified as Pseudomonas stutzeri based on its morphology, biochemical and molecular characterization. Upon ultra-performance liquid chromatography analysis, the free cells of isolated bacterium strain was found to utilize 174 µg/L of ATZ after 3-days of incubation on a mineral salt medium containing 200 µg/L of ATZ as a sole carbon source. It was observed that immobilized based degradation of ATZ yielded 198 µg/L and 190 µg/L by the cells entrapped with silica beads and sponge, respectively. Furthermore, the liquid chromatography-mass spectroscopy revealed that the secretion of three significant metabolites, namely, cyanuric acid, hydroxyatrazine and N- N-Isopropylammelide is responsive to the biodegradation of ATZ by the bacterium. Collectively, this research demonstrated that bacterium strains are the most potent agent for removing toxic pollutants from the environment, thereby enhancing crop yield and soil fertility with long-term environmental benefits.

7.
Environ Res ; 216(Pt 1): 114498, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209791

RESUMEN

The fungal symbiosis with the plant root system is importantly recognized as a plant growth promoting fungi (PGPFs), as well as elicitor of plant defence against different biotic and abiotic stress conditions. Thus PGPFs are playing as a key trouper in enhancing agricultural quality and increased crop production and paving a way towards a sustainable agriculture. Due to increased demand of food production, the over and unscientific usage of chemical fertilizers has led to the contamination of soil by organic and inorganic wastes impacting on soil quality, crops quality effecting on export business of agricultural products. The application of microbial based consortium like plant growth promoting fungi is gaining worldwide importance due to their multidimensional activity. These activities are through plant growth promotion, induction of systemic resistance, disease combating and detoxification of organic and inorganic toxic chemicals, a heavy metal tolerance ability. The master key behind these properties exhibited by PGPFs are attributed towards various secretory biomolecules (secondary metabolites or enzymes or metabolites) secreted by the fungi during interaction mechanism. The present review is focused on the multidimensional role PGPFs as elicitors of Induced systemic resistance against phytopathogens as well as heavy metal detoxifier through seed biopriming and biofortification methods. The in-sights on PGPFs and their probable mechanistic nature contributing towards plants to withstand heavy metal stress and stress alleviation by activating of various stress regulatory pathways leading to secretion of low molecular weight compounds like organic compounds, glomalin, hydrophobins, etc,. Thus projecting the importance of PGPFs and further requirement of research in developing PGPFs based molecules and combining with trending Nano technological approaches for enhanced heavy metal stress alleviations in plant and soil as well as establishing a sustainable agriculture.


Asunto(s)
Metales Pesados , Suelo , Biodegradación Ambiental , Secretoma , Metales Pesados/toxicidad , Productos Agrícolas/metabolismo , Semillas/metabolismo , Hongos
8.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769262

RESUMEN

Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is a devastating soilborne disease in tomatoes. Magnesium oxide nanoparticles (MgO NPs) induce strong immunity against Fusarium wilt in tomatoes. However, the mechanisms underlying this immunity remain poorly understood. Comparative transcriptome analysis and microscopy of tomato roots were performed to determine the mechanism of MgO NP-induced immunity against FOL. Eight transcriptomes were prepared from tomato roots treated under eight different conditions. Differentially expressed genes were compared among the transcriptomes. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that in tomato roots pretreated with MgO NPs, Rcr3 encoding apoplastic protease and RbohD encoding NADPH oxidase were upregulated when challenge-inoculated with FOL. The gene encoding glycine-rich protein 4 (SlGRP4) was chosen for further analysis. SlGRP4 was rapidly transcribed in roots pretreated with MgO NPs and inoculated with FOL. Immunomicroscopy analysis showed that SlGRP4 accumulated in the cell walls of epidermal and vascular vessel cells of roots pretreated with MgO NPs, but upon FOL inoculation, SlGRP4 further accumulated in the cell walls of cortical tissues within 48 h. The results provide new insights into the probable mechanisms of MgO NP-induced tomato immunity against Fusarium wilt.


Asunto(s)
Fusarium , Nanopartículas , Solanum lycopersicum , Solanum lycopersicum/genética , Fusarium/genética , Óxido de Magnesio , Enfermedades de las Plantas/genética
9.
World J Microbiol Biotechnol ; 39(6): 148, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022650

RESUMEN

The advances in nanotechnology have shown enormous impacts in environmental technology as a potent weapon for degradation of toxic organic pollutants and detoxification of heavy metals. It is either by in-situ or ex-situ adaptive strategies. Mycoremediation of environmental pollutants has been a success story of the past decade, by employing the wide arsenal of biological capabilities of fungi. Recently, the proficiency and uniqueness of yeast cell surface alterations have encouraged the generation of engineered yeast cells as dye degraders, heavy metal reduction and its recovery, and also as detoxifiers of various hazardous xenobiotic compounds. As a step forward, recent trends in research are towards developing biologically engineered living materials as potent, biocompatible and reusable hybrid nanomaterials. They include chitosan-yeast nanofibers, nanomats, nanopaper, biosilica hybrids, and TiO2-yeast nanocomposites. The nano-hybrid materials contribute significantly as supportive stabilizer, and entrappers, which enhances the biofabricated yeast cells' functionality. This field serves as an eco-friendly cutting-edge cocktail research area. In this review, we highlight recent research on biofabricated yeast cells and yeast-based biofabricated molecules, as potent heavy metals, toxic chemical detoxifiers, and their probable mechanistic properties with future application perspectives.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Nanoestructuras , Contaminantes Químicos del Agua , Adsorción , Contaminantes Ambientales/toxicidad , Metales Pesados/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Arch Microbiol ; 204(3): 172, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165751

RESUMEN

In the recent years, yeasts have evolved as potent bioremediative candidates for the detoxification of xenobiotic compounds found in the natural environment. Candida sp. are well-studied apart from Saccharomyces sp. in heavy metal detoxification mechanisms. In the current study, Candida parapsilosis strain ODBG2, Candida sp. strain BANG3, and Candida viswanathii strain ODBG4 were isolated from industrial effluents and contaminated ground water, and were studied for their metal tolerance. Among these three isolates, the metal tolerance was found to be more towards Lead (Pb 2 mM), followed by Cadmium (Cd 1.5 mM) and Chromium [Cr(VI), 1 mM]. On further exploring the involvement of primary defensive enzymes in these isolates towards metal tolerance, the anti-oxidative enzyme superoxide dismutase was found to be prominently high (25% with respect to the control) during first 24 h of metal-isolate interaction. The Catalase enzyme assay was observed to have increased enzyme activity at 48 h. It also triggered the activity of peroxidases, which lead to the increase in reduced glutathione in the organism by 0.87-1.9-fold as a metal chelator and also as a second-line defensive molecule. The exoproteome profile showed the early involvement (exponential growth phase) of secreted proteins (low-molecular-weight) of about ~ 40-45 kDa under Cd and Pb stress (0.5 mM). The exoproteome profiling under heavy metal stress in Candida parapsilosis strain ODBG2 and Candida viswanathii strain ODBG4 is the first report.


Asunto(s)
Metales Pesados , Saccharomyces cerevisiae , Cadmio/toxicidad , Cromo , Metales Pesados/toxicidad , Estrés Oxidativo
11.
Anal Biochem ; 618: 114121, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33515498

RESUMEN

The impact of gamma radiation on the activation of rice innate immunity to blast disease caused by Magnaporthe oryzae is described. In the present study, fenugreek seed extracts radiated with different doses of gamma rays viz. 5Gy, 10Gy, 15Gy, 20Gy and 25Gy were examined for their presence of biocompounds as well as for its ability to induce plant growth promotion and resistance against rice blast disease. The results of GC-MS analysis detected antimicrobial properties in methanolic extract. Enhanced germination (97%) and vigor (2718) was noticed in seeds pretreated with 20 Gy of gamma radiation in comparison with non-irradiated controls. Under greenhouse conditions, a significant disease protection of 56.7% on 3rd and 4th day after inoculation against rice blast was observed in 15Gy-irradiated rice plants challenge-inoculated with M. oryzae. Further, a significant increase in the hydrogen peroxide, phenol and lignin deposition was noticed in 20Gy-irradiated rice plants. Additionally, rice plants pretreated with 15Gy induced maximum activities of peroxidase (POX) and polyphenol oxidase (PPO) compared to untreated control plants. These findings revealed that rice plants-pretreated with gamma radiation elicit resistance against rice blast disease as well as strengthening the growth parameters by modulating cellular and biochemical defense system.


Asunto(s)
Resistencia a la Enfermedad/efectos de los fármacos , Rayos gamma , Oryza , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Trigonella/química , Oryza/crecimiento & desarrollo , Oryza/microbiología , Extractos Vegetales/química
12.
Anal Biochem ; 614: 114024, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33245903

RESUMEN

Baliospermum montanum (Willd.) Muell. Arg, a medicinal plant distributed throughout India from Kashmir to peninsular-Indian region is extensively used to treat jaundice, asthma, and constipation. In the current study, 203 endophytic fungi representing twenty-nine species were isolated from tissues of B. montanum. The colonization and isolation rate of endophytes were higher in stem followed by seed, root, leaf and flower. The phytochemical analysis revealed 70% endophytic isolates showed alkaloids and flavonoids, 13% were positive for phenols, saponins and terpenoids. Further, these endophytes produced remarkable extracellular enzymes such as amylase, cellulase, phosphates, protease and lipase. The most promisive three endophytic fungi were identified by ITS region and secreted metabolites were identified by gas chromatography-mass spectrometry (GC-MS/MS). The GC-MS profile detected twenty-five bioactive compounds from ethyl acetate extracts. Among endophytic fungi, Trichoderma reesei isolated from flower exhibited nine bioactive compounds namely, 2-Cyclopentenone, 2-(4-chloroanilino)-4-piperidino, Oxime-methoxy-Phenyl, Methanamine N-hydroxy-N-methyl, Strychane, Cyclotetrasiloxane, Octamethyl and 1-Acetyl-20a-hydroxy-16-methylene. The endophyte, Aspergillus brasiliensis isolated from root and Fusarium oxysporum isolated from seed produced nine and seven bioactive compounds, respectively. Overall, a significant contribution of bioactive compounds was noticed from the diverse endophytic fungi associated with B. montanum and could be explored for development of novel drug with commercial values.


Asunto(s)
Aspergillus/aislamiento & purificación , Endófitos/aislamiento & purificación , Enzimas/análisis , Euphorbiaceae/microbiología , Fusarium/aislamiento & purificación , Hypocreales/aislamiento & purificación , Alcaloides/análisis , Amilasas/análisis , Aspergillus/química , Celulasa/análisis , Endófitos/química , Flavonoides/análisis , Fusarium/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Hypocreales/química , India , Lipasa/análisis , Péptido Hidrolasas/análisis , Hojas de la Planta/microbiología , Plantas Medicinales/microbiología
13.
Environ Res ; 200: 111368, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34081974

RESUMEN

Organophosphorus insecticides (OPIs) have low persistence and are easily biodegradable in nature. The United States and India are the major countries producing OPIs of about 25% and 17% of the world, respectively. OPIs commonly used for agricultural practices occupy a major share in the global market, which leads to the increasing contamination of OPIs residues in various food chains. To overcome this issue, an enzymatic degradation method has been approved by several environmental toxic, and controlling agencies, including United States Environmental Protection Agency (USEPA). Different catalytic enzymes have been isolated and identified from various microbial sources to neutralize the toxic pesticides and/or insecticides. In this review, we have gathered information on OPIs biotransformation and their residual toxicity in the environment. Particularly, it focuses on OPIs degrading enzymes such as chlorpyrifos hydrolase, diisopropylfluorophosphatase, organophosphate acid anhydrolase, organophosphate hydrolases, and phosphotriesterases like lactonasesspecific activity either P-O link group type or P-S link group of pesticides. To summarize, the catalytic degradation of organophosphorus insecticides is not only profitable but also environmentally friendly. Hence, the enzymatic catalyst is an ultimate and super bio-weapon to mitigate or decontaminate various OPIs residues in both terrestrial and aqueous environments.


Asunto(s)
Cloropirifos , Insecticidas , Plaguicidas , Biodegradación Ambiental , Biotransformación , Compuestos Organofosforados/toxicidad
14.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205396

RESUMEN

Members of the lectin receptor-like kinase (LecRLKs) family play a vital role in innate plant immunity. Few members of the LecRLKs family have been characterized in rice and Arabidopsis, respectively. However, little literature is available about LecRLKs and their role against fungal infection in cucumber. In this study, 60 putative cucumber LecRLK (CsLecRLK) proteins were identified using genome-wide analysis and further characterized into L-type LecRLKs (24) and G-type LecRLKs (36) based on domain composition and phylogenetic analysis. These proteins were allocated to seven cucumber chromosomes and found to be involved in the expansion of the CsLecRLK gene family. Subcellular localization of CsaLecRLK9 and CsaLecRLK12 showed green fluorescence signals in the plasma membrane of leaves. The transcriptional profiling of CsLecRLK genes showed that L-type LecRLKs exhibited functional redundancy as compared to G-type LecRLKs. The qRT-PCR results indicated that both L- and G-type LecRLKs showed significant response against plant growth-promoting fungi (PGPF-Trichoderma harzianum Rifai), powdery mildew pathogen (PPM-Golovinomyces orontii (Castagne) V.P. Heluta), and combined (PGPF+PPM) treatments. The findings of this study contribute to a better understanding of the role of cucumber CsLecRLK genes in response to PGPF, PPM, and PGPF+PPM treatments and lay the basis for the characterization of this important functional gene family.


Asunto(s)
Cucumis sativus/enzimología , Erysiphe/inmunología , Inmunidad de la Planta , Proteínas Quinasas/genética , Estrés Fisiológico , Cromosomas de las Plantas , Cucumis sativus/genética , Cucumis sativus/inmunología , Perfilación de la Expresión Génica , Genes de Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo
15.
Microb Pathog ; 149: 104533, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32980470

RESUMEN

In recent years, blast disease caused by Magnaporthe grisea, an ascomycete fungus is becoming a serious threat to pearl millet crop in India and worldwide. Due to the increase in virulent races of pathogen, blast disease management strategies seemed to be very limited. Hence, unraveling the occurrence of blast isolates across India and understanding their virulence and genetic relatedness using molecular markers are the key objectives of this study. From Farmer's field survey we have evidenced variability in blast pathogen across India by recording 10.6 to 7.9 disease severities. A fair to good variation in cultural and conidial characters were also noticed for 17 field isolates. The identity of 17 isolates was confirmed as Magnaporthe grisea by internal transcribed spacer (ITS) region. Based on 12 host differential virulence reactions, five isolates BgKMg1, BdmMg2, MtgMg11, JprMg16 and JmnMg17 recorded highly susceptible (>5 grade) to nine differentials used in the study. While, host differentials ICMB95444, ICMR06222, ICMR11003, IP21187 and ICMV155 found effective for screening virulence of blast disease. Furthermore, genetic relatedness assessed by ITS, inter simple sequence repeats (ISSR) and simple sequence repeats (SSR) markers produced high degree of polymorphism and was able to distinguish the virulence pattern of 17 isolates that correlated with phenotypic screening. Among markers, clustering of isolates within groups was significantly different with remarkable genetic similarity coefficient and bootstrap values. Overall, these results confirm a significant morphological and genetic variation among 17 isolates, thereby helping to elucidate the virulence of pearl millet blast populations in India that could avoid breakdown of resistance and assist breeding improved pearl millet cultivars.


Asunto(s)
Magnaporthe , Oryza , Pennisetum , India , Magnaporthe/genética , Enfermedades de las Plantas , Pyricularia grisea , Virulencia/genética
16.
Plant Cell Environ ; 41(9): 1972-1983, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29314055

RESUMEN

Grain legumes are an important source of nutrition and income for billions of consumers and farmers around the world. However, the low productivity of new legume varieties, due to the limited genetic diversity available for legume breeding programmes and poor policymaker support, combined with an increasingly unpredictable global climate is resulting in a large gap between current yields and the increasing demand for legumes as food. Hence, there is a need for novel approaches to develop new high-yielding legume cultivars that are able to cope with a range of environmental stressors. Next-generation technologies are providing the tools that could enable the more rapid and cost-effective genomic and transcriptomic studies for most major crops, allowing the identification of key functional and regulatory genes involved in abiotic stress resistance. In this review, we provide an overview of the recent achievements regarding abiotic stress resistance in a wide range of legume crops and highlight the transcriptomic and miRNA approaches that have been used. In addition, we critically evaluate the availability and importance of legume genetic resources with desirable abiotic stress resistance traits.


Asunto(s)
Fabaceae/fisiología , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Productos Agrícolas/genética , Fabaceae/genética , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo , Transcriptoma
17.
J Exp Bot ; 69(15): 3639-3650, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29905866

RESUMEN

Grapevine, Vitis vinifera, is an important economic fruit crop that is highly sensitive to gibberellin (GA), and the exogenous application of GA can efficiently induce grapevine parthenocarpy. However, the molecular mechanisms underlying this process remain elusive. In this study, morphological changes during flower development in response to GA treatments were examined in the 'Zuijinxiang' cultivar. To obtain insights into the roles of miRNA159s in GA-induced grapevine parthenocarpy, VvmiR159a, VvmiR159b, VvmiR159c, and their target gene VvGAMYB were isolated, sequenced and characterized. Spatial-temporal expression analyses showed that VvmiR159c exhibited the highest expression levels at 4 d before flowering, followed by a gradual decrease, while VvGAMYB displayed an opposite pattern of expression with the lowest expression at the corresponding stage in response to GA treatment. A cleavage interaction between VvmiR159s and VvGAMYB and variations of their cleavage roles were confirmed in grapevine floral development. In addition, the potential roles of VvmiR159s in GA signaling were investigated through DELLA-protein repressors, indicating that GA-DELLA (SLR1)-VvmiR159c-VvGAMYB is the key signaling regulatory module in grapevine. Our findings provide novel insights into the GA-responsive roles of VvmiR159s in modulating grapevine floral development, which have important implications for the molecular breeding of high-quality seedless grapevine berry.


Asunto(s)
Giberelinas/metabolismo , MicroARNs/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Vitis/genética , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , ARN de Planta/genética , Vitis/crecimiento & desarrollo
18.
Physiol Plant ; 164(4): 429-441, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30144090

RESUMEN

Grapevine is one of the earliest domesticated fruit crops that has been widely prized and cultivated for its fruit and wine. Grapes exhibit a wide range of colors, ranging from the green/yellow to the dark blue tones according to the amount and composition of anthocyanin. During the last decades, many studies regarding the genetic control of the grape color in European, American and Asian cultivars have been well documented. DNA binding genes for several transcription factors, such as MYBA1 and MYBA2 haplotype compositions at the color locus are the key determinant of anthocyanin diversity and grape skin color development. Retrotransposon in the MYBA1 promoter region and mutation in MYBA2 coding sequence resulted in a white-skinned grape. The MYB haplotypes affect the ratio of tri/di-hydroxylated anthocyanins and methylated/non-methylated anthocyanins through the regulation of several structural genes involved in the anthocyanin biosynthesis, resulting in diverse colored tones. The present review provides an overview of the current state of the molecular mechanisms underlying the genetic regulations of the anthocyanin accumulation and diversification in grapes. The hypothesized models described in this review is a step forward to potentially predict the color diversification in different grape cultivars, which translate the advances in fundamental plant biology toward the application of grape molecular breeding.


Asunto(s)
Frutas/metabolismo , Agricultura Molecular/métodos , Pigmentos Biológicos/fisiología , Vitis/fisiología , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Pigmentos Biológicos/genética , Vitis/genética
19.
Int J Mol Sci ; 19(1)2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29301344

RESUMEN

Staphylococcus aureus is an opportunistic bacterium that produces various types of toxins, resulting in serious food poisoning. Staphylococcal enterotoxins (SEs) are heat-stable and resistant to hydrolysis by digestive enzymes, representing a potential hazard for consumers worldwide. In the present study, we used amino-acid sequences encoding SEA and SEB-like to identify their respective template structure and build the three-dimensional (3-D) models using homology modeling method. Two natural compounds, Betulin and 28-Norolean-12-en-3-one, were selected for docking study on the basis of the criteria that they satisfied the Lipinski's Rule-of-Five. A total of 14 and 13 amino-acid residues were present in the best binding site predicted in the SEA and SEB-like, respectively, using the Computer Atlas of Surface Topology of Proteins (CASTp). Among these residues, the docking study with natural compounds Betulin and 28-Norolean-12-en-3-one revealed that GLN43 and GLY227 in the binding site of the SEA, each formed a hydrogen-bond interaction with 28-Norolean-12-en-3-one; while GLY227 residue established a hydrogen bond with Betulin. In the case of SEB-like, the docking study demonstrated that ASN87 and TYR88 residues in its binding site formed hydrogen bonds with Betulin; whereas HIS59 in the binding site formed a hydrogen-bond interaction with 28-Norolean-12-en-3-one. Our results demonstrate that the toxic effects of these two SEs can be effectively treated with antitoxins like Betulin and 28-Norolean-12-en-3-one, which could provide an effective drug therapy for this pathogen.


Asunto(s)
Antitoxinas/química , Biología Computacional/métodos , Enterotoxinas/química , Modelos Moleculares , Secuencia de Aminoácidos , Ligandos , Simulación del Acoplamiento Molecular , Reproducibilidad de los Resultados , Homología Estructural de Proteína
20.
Plant Cell Rep ; 36(7): 1009-1025, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28484792

RESUMEN

The increasing demand for food and the heavy yield losses in primary crops due to global warming mean that there is an urgent need to improve food security. Therefore, understanding how plants respond to heat stress and its consequences, such as drought and increased soil salinity, has received much attention in plant science community. Plants exhibit stress tolerance, escape or avoidance via adaptation and acclimatization mechanisms. These mechanisms rely on a high degree of plasticity in their cellular metabolism, in which phytohormones play an important role. "STAY-GREEN" is a crucial trait for genetic improvement of several crops, which allows plants to keep their leaves on the active photosynthetic level under stress conditions. Understanding the physiological and molecular mechanisms concomitant with "STAY-GREEN" trait or delayed leaf senescence, as well as those regulating photosynthetic capability of plants under heat stress, with a certain focus on the hormonal pathways, may be a key to break the plateau of productivity associated with adaptation to high temperature. This review will discuss the recent findings that advance our understanding of the mechanisms controlling leaf senescence and hormone signaling cascades under heat stress.


Asunto(s)
Calor , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA