Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Gen Virol ; 99(4): 596-609, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29533743

RESUMEN

Liao ning virus (LNV) was first isolated in 1996 from mosquitoes in China, and has been shown to replicate in selected mammalian cell lines and to cause lethal haemorrhagic disease in experimentally infected mice. The first detection of LNV in Australia was by deep sequencing of mosquito homogenates. We subsequently isolated LNV from mosquitoes of four genera (Culex, Anopheles, Mansonia and Aedes) in New South Wales, Northern Territory, Queensland and Western Australia; the earliest of these Australian isolates were obtained from mosquitoes collected in 1988, predating the first Chinese isolates. Genetic analysis revealed that the Australian LNV isolates formed two new genotypes: one including isolates from eastern and northern Australia, and the second comprising isolates from the south-western corner of the continent. In contrast to findings reported for the Chinese LNV isolates, the Australian LNV isolates did not replicate in vertebrate cells in vitro or in vivo, or produce signs of disease in wild-type or immunodeficient mice. A panel of human and animal sera collected from regions where the virus was found in high prevalence also showed no evidence of LNV-specific antibodies. Furthermore, high rates of virus detection in progeny reared from infected adult female mosquitoes, coupled with visualization of the virus within the ovarian follicles by immunohistochemistry, suggest that LNV is transmitted transovarially. Thus, despite relatively minor genomic differences between Chinese and Australian LNV strains, the latter display a characteristic insect-specific phenotype.


Asunto(s)
Aedes/virología , Anopheles/virología , Culex/virología , Mosquitos Vectores/virología , Infecciones por Reoviridae/virología , Reoviridae/aislamiento & purificación , Aedes/fisiología , Animales , Anopheles/fisiología , Australia , China , Culex/fisiología , Femenino , Genoma Viral , Genotipo , Especificidad del Huésped , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mosquitos Vectores/fisiología , Fenotipo , Filogenia , Reoviridae/clasificación , Reoviridae/genética , Reoviridae/fisiología , Infecciones por Reoviridae/transmisión , Replicación Viral
2.
Emerg Infect Dis ; 23(8): 1289-1299, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28726621

RESUMEN

In northern Western Australia in 2011 and 2012, surveillance detected a novel arbovirus in mosquitoes. Genetic and phenotypic analyses confirmed that the new flavivirus, named Fitzroy River virus, is related to Sepik virus and Wesselsbron virus, in the yellow fever virus group. Most (81%) isolates came from Aedes normanensis mosquitoes, providing circumstantial evidence of the probable vector. In cell culture, Fitzroy River virus replicated in mosquito (C6/36), mammalian (Vero, PSEK, and BSR), and avian (DF-1) cells. It also infected intraperitoneally inoculated weanling mice and caused mild clinical disease in 3 intracranially inoculated mice. Specific neutralizing antibodies were detected in sentinel horses (12.6%), cattle (6.6%), and chickens (0.5%) in the Northern Territory of Australia and in a subset of humans (0.8%) from northern Western Australia.


Asunto(s)
Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/virología , Flavivirus/fisiología , Aedes/virología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Australia/epidemiología , Flavivirus/clasificación , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/transmisión , Genoma Viral , Humanos , Ratones , Filogenia , Recombinación Genética , Estados Unidos/epidemiología , Virulencia , Replicación Viral , Secuenciación Completa del Genoma
3.
Emerg Infect Dis ; 22(8): 1353-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27433830

RESUMEN

Worldwide, West Nile virus (WNV) causes encephalitis in humans, horses, and birds. The Kunjin strain of WNV (WNVKUN) is endemic to northern Australia, but infections are usually asymptomatic. In 2011, an unprecedented outbreak of equine encephalitis occurred in southeastern Australia; most of the ≈900 reported cases were attributed to a newly emerged WNVKUN strain. To investigate the origins of this virus, we performed genetic analysis and in vitro and in vivo studies of 13 WNVKUN isolates collected from different regions of Australia during 1960-2012. Although no disease was recorded for 1984, 2000, or 2012, isolates collected during those years (from Victoria, Queensland, and New South Wales, respectively) exhibited levels of virulence in mice similar to that of the 2011 outbreak strain. Thus, virulent strains of WNVKUN have circulated in Australia for >30 years, and the first extensive outbreak of equine disease in Australia probably resulted from a combination of specific ecologic and epidemiologic conditions.


Asunto(s)
Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/patogenicidad , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Especificidad de Anticuerpos , Antígenos Virales/genética , Australia/epidemiología , Línea Celular , Evolución Molecular , Genoma Viral , Humanos , Ratones , Virulencia , Fiebre del Nilo Occidental/epidemiología
4.
Commun Dis Intell Q Rep ; 40(3): E400-E436, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28278416

RESUMEN

This report describes the epidemiology of mosquito-borne diseases of public health importance in Australia during the 2013-14 season (1 July 2013 to 30 June 2014) and includes data from human notifications, sentinel chicken, vector and virus surveillance programs. The National Notifiable Diseases Surveillance System received notifications for 8,898 cases of disease transmitted by mosquitoes during the 2013-14 season. The Australasian alphaviruses Barmah Forest virus and Ross River virus accounted for 6,372 (72%) total notifications. However, over-diagnosis and possible false positive diagnostic test results for these 2 infections mean that the true burden of infection is likely overestimated, and as a consequence, the case definitions have been amended. There were 94 notifications of imported chikungunya virus infection and 13 cases of imported Zika virus infection. There were 212 notifications of dengue virus infection acquired in Australia and 1,795 cases acquired overseas, with an additional 14 cases for which the place of acquisition was unknown. Imported cases of dengue were most frequently acquired in Indonesia (51%). No cases of locally-acquired malaria were notified during the 2013-14 season, though there were 373 notifications of overseas-acquired malaria. In 2013-14, arbovirus and mosquito surveillance programs were conducted in most jurisdictions. Surveillance for exotic mosquitoes at international ports of entry continues to be a vital part of preventing the spread of vectors of mosquito-borne diseases such as dengue to new areas of Australia, with 13 detections of exotic mosquitoes at the ports of entry in 2013-14.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Infecciones por Arbovirus/epidemiología , Culicidae/virología , Insectos Vectores/virología , Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Infecciones por Alphavirus/diagnóstico , Infecciones por Alphavirus/transmisión , Animales , Infecciones por Arbovirus/diagnóstico , Infecciones por Arbovirus/transmisión , Australia/epidemiología , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/transmisión , Niño , Preescolar , Dengue/diagnóstico , Dengue/epidemiología , Dengue/transmisión , Notificación de Enfermedades/estadística & datos numéricos , Emigración e Inmigración/estadística & datos numéricos , Monitoreo Epidemiológico , Reacciones Falso Positivas , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Malaria/diagnóstico , Malaria/transmisión , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Viaje/estadística & datos numéricos , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión
5.
Commun Dis Intell Q Rep ; 40(1): E17-47, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27080023

RESUMEN

This report describes the epidemiology of mosquito-borne diseases of public health importance in Australia during the 2012-13 season (1 July 2012 to 30 June 2013) and includes data from human notifications, sentinel chicken, vector and virus surveillance programs. The National Notifiable Diseases Surveillance System received notifications for 9,726 cases of disease transmitted by mosquitoes during the 2012-13 season. The Australasian alphaviruses Barmah Forest virus and Ross River virus accounted for 7,776 (80%) of total notifications. However, over-diagnosis and possible false positive diagnostic test results for these 2 infections mean that the true burden of infection is likely overestimated, and as a consequence, the case definitions were revised, effective from 1 January 2016. There were 96 notifications of imported chikungunya virus infection. There were 212 notifications of dengue virus infection acquired in Australia and 1,202 cases acquired overseas, with an additional 16 cases for which the place of acquisition was unknown. Imported cases of dengue were most frequently acquired in Indonesia. No locally-acquired malaria was notified during the 2012-13 season, though there were 415 notifications of overseas-acquired malaria. There were no cases of Murray Valley encephalitis virus infection in 2012-13. In 2012-13, arbovirus and mosquito surveillance programs were conducted in most jurisdictions with a risk of vectorborne disease transmission. Surveillance for exotic mosquitoes at the border continues to be a vital part of preventing the spread of mosquito-borne diseases such as dengue to new areas of Australia, and in 2012-13, there were 7 detections of exotic mosquitoes at the border.


Asunto(s)
Infecciones por Arbovirus/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Malaria/epidemiología , Vigilancia en Salud Pública , Comités Consultivos , Animales , Arbovirus/patogenicidad , Arbovirus/fisiología , Vectores Artrópodos/microbiología , Vectores Artrópodos/parasitología , Vectores Artrópodos/virología , Australia/epidemiología , Culicidae/parasitología , Notificación de Enfermedades/estadística & datos numéricos , Humanos , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/fisiología , Plasmodium knowlesi/patogenicidad , Plasmodium knowlesi/fisiología , Plasmodium ovale/patogenicidad , Plasmodium ovale/fisiología , Plasmodium vivax/patogenicidad , Plasmodium vivax/fisiología
6.
BMC Infect Dis ; 14: 672, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25490948

RESUMEN

BACKGROUND: Murray Valley encephalitis virus (MVEV) is a flavivirus that occurs in Australia and New Guinea. While clinical cases are uncommon, MVEV can cause severe encephalitis with high mortality. Sentinel chicken surveillance is used at many sites around Australia to provide an early warning system for risk of human infection in areas that have low population density and geographical remoteness. MVEV in Western Australia occurs in areas of low population density and geographical remoteness, resulting in logistical challenges with surveillance systems and few human cases. While epidemiological data has suggested an association between rainfall and MVEV activity in outbreak years, it has not been quantified, and the association between rainfall and sporadic cases is less clear. In this study we analysed 22 years of sentinel chicken and human case data from Western Australia in order to evaluate the effectiveness of sentinel chicken surveillance for MVEV and assess the association between rainfall and MVEV activity. METHODS: Sentinel chicken seroconversion, human case and rainfall data from the Kimberley and Pilbara regions of Western Australia from 1990 to 2011 were analysed using negative binomial regression. Sentinel chicken seroconversion and human cases were used as dependent variables in the model. The model was then tested against sentinel chicken and rainfall data from 2012 and 2013. RESULTS: Sentinel chicken seroconversion preceded all human cases except two in March 1993. Rainfall in the prior three months was significantly associated with both sentinel chicken seroconversion and human cases across the regions of interest. Sentinel chicken seroconversion was also predictive of human cases in the models. The model predicted sentinel chicken seroconversion in the Kimberley but not in the Pilbara, where seroconversions early in 2012 were not predicted. The latter may be due to localised MVEV activity in isolated foci at dams, which do not reflect broader virus activity in the region. CONCLUSIONS: We showed that rainfall and sentinel chickens provide a useful early warning of MVEV risk to humans across endemic and epidemic areas, and that a combination of the two indicators improves the ability to assess MVEV risk and inform risk management measures.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Arbovirus/veterinaria , Pollos/inmunología , Virus de la Encefalitis del Valle Murray/inmunología , Encefalitis por Arbovirus/epidemiología , Lluvia , Animales , Infecciones por Arbovirus/inmunología , Australia/epidemiología , Brotes de Enfermedades , Humanos , Vigilancia de Guardia , Australia Occidental/epidemiología
7.
Commun Dis Intell Q Rep ; 38(2): E122-42, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-25222207

RESUMEN

The National Notifiable Diseases Surveillance System received notifications for 7,875 cases of disease transmitted by mosquitoes during the 2011-12 season (1 July 2011 to 30 June 2012). The alphaviruses Barmah Forest virus and Ross River virus accounted for 6,036 (77%) of these. There were 18 notifications of dengue virus infection acquired in Australia and 1,390 cases that were acquired overseas, while for 38 cases, the place of acquisition was unknown. Imported cases of dengue in Australia were most frequently acquired in Indonesia. There were 20 imported cases of chikungunya virus. There were no notifications of locally-acquired malaria in Australia during the 2011-12 season. There were 314 notifications of overseas-acquired malaria and 41 notifications where the place of acquisition was unknown. Sentinel chicken, mosquito surveillance, viral detection in mosquitoes and climate modelling are used to provide early warning of arboviral disease activity in Australia. In 2011-12, sentinel chicken programs for the detection of flavivirus activity were conducted in most states with the risk of arboviral transmission. Other surveillance activities to detect the presence of arboviruses in mosquitoes or mosquito saliva or for surveying mosquito abundance included honey-baited trap surveillance, surveys of household containers that may provide suitable habitat for the dengue vector, Aedes aegypti, and carbon dioxide baited traps. Surveillance for exotic mosquitoes at the border continues to be a vital part of preventing the spread of mosquito-borne diseases to new areas of Australia.


Asunto(s)
Infecciones por Arbovirus/epidemiología , Malaria/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alphavirus , Animales , Infecciones por Arbovirus/historia , Infecciones por Arbovirus/transmisión , Infecciones por Arbovirus/virología , Australia/epidemiología , Niño , Preescolar , Clima , Notificación de Enfermedades , Reservorios de Enfermedades , Vectores de Enfermedades , Femenino , Flavivirus , Geografía Médica , Historia del Siglo XXI , Humanos , Lactante , Recién Nacido , Malaria/historia , Malaria/prevención & control , Malaria/transmisión , Masculino , Persona de Mediana Edad , Control de Mosquitos , Adulto Joven
8.
Proc Natl Acad Sci U S A ; 107(25): 11255-9, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20534559

RESUMEN

Arthropod-borne viruses (arboviruses) represent a global public health problem, with dengue viruses causing millions of infections annually, while emerging arboviruses, such as West Nile, Japanese encephalitis, and chikungunya viruses have dramatically expanded their geographical ranges. Surveillance of arboviruses provides vital data regarding their prevalence and distribution that may be utilized for biosecurity measures and the implementation of disease control strategies. However, current surveillance methods that involve detection of virus in mosquito populations or sero-conversion in vertebrate hosts are laborious, expensive, and logistically problematic. We report a unique arbovirus surveillance system to detect arboviruses that exploits the process whereby mosquitoes expectorate virus in their saliva during sugar feeding. In this system, infected mosquitoes captured by CO(2)-baited updraft box traps are allowed to feed on honey-soaked nucleic acid preservation cards within the trap. The cards are then analyzed for expectorated virus using real-time reverse transcription-PCR. In field trials, this system detected the presence of Ross River and Barmah Forest viruses in multiple traps deployed at two locations in Australia. Viral RNA was preserved for at least seven days on the cards, allowing for long-term placement of traps and continuous collection of data documenting virus presence in mosquito populations. Furthermore no mosquito handling or processing was required and cards were conveniently shipped to the laboratory overnight. The simplicity and efficacy of this approach has the potential to transform current approaches to vector-borne disease surveillance by streamlining the monitoring of pathogens in vector populations.


Asunto(s)
Infecciones por Arbovirus/metabolismo , Arbovirus/metabolismo , Alimentación Animal , Animales , Dióxido de Carbono/química , Chlorocebus aethiops , Culicidae/virología , Miel , Insectos Vectores/virología , ARN Viral/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saliva/metabolismo , Factores de Tiempo , Células Vero
9.
J Biomed Biotechnol ; 2012: 325659, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22505808

RESUMEN

Control of arboviral disease is dependent on the sensitive and timely detection of elevated virus activity or the identification of emergent or exotic viruses. The emergence of Japanese encephalitis virus (JEV) in northern Australia revealed numerous problems with performing arbovirus surveillance in remote locations. A sentinel pig programme detected JEV activity, although there were a number of financial, logistical, diagnostic and ethical limitations. A system was developed which detected viral RNA in mosquitoes collected by solar or propane powered CO2-baited traps. However, this method was hampered by trap-component malfunction, microbial contamination and large mosquito numbers which overwhelmed diagnostic capabilities. A novel approach involves allowing mosquitoes within a box trap to probe a sugar-baited nucleic-acid preservation card that is processed for expectorated arboviruses. In a longitudinal field trial, both Ross River and Barmah Forest viruses were detected numerous times from multiple traps over different weeks. Further refinements, including the development of unpowered traps and use of yeast-generated CO2, could enhance the applicability of this system to remote locations. New diagnostic technology, such as next generation sequencing and biosensors, will increase the capacity for recognizing emergent or exotic viruses, while cloud computing platforms will facilitate rapid dissemination of data.


Asunto(s)
Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/veterinaria , Arbovirus/aislamiento & purificación , Culicidae/virología , Vigilancia de Guardia/veterinaria , Animales , Australia/epidemiología , Humanos
10.
Commun Dis Intell Q Rep ; 36(1): 70-81, 2012 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-23153083

RESUMEN

The National Notifiable Diseases Surveillance System received 7,609 notified cases of disease transmitted by mosquitoes for the season 1 July 2009 to 30 June 2010. The alphaviruses Barmah Forest virus and Ross River virus, accounted for 6,546 (79%) of these notifications during the 2009-10 season. There were 37 notifications of dengue virus infection locally-acquired from North Queensland and 581 notified cases in Australia that resulted from overseas travel. This number of overseas acquired cases continues to rise each year due to increasing disease activity in the Asia-Pacific region and increased air travel. Detection of flavivirus seroconversions in sentinel chicken flocks across Australia provides an early warning of increased levels of Murray Valley encephalitis virus and Kunjin virus activity. Flavivirus activity was detected in western and northern Australia in 2009-10, which prompted public health action. No human cases of Murray Valley encephalitis virus infection were notified, while there were 2 cases of Kunjin virus infection notified. There were no notifications of locally-acquired malaria in Australia and 429 notifications of overseas-acquired malaria during the 2009-10 season. This annual report presents information of diseases transmitted by mosquitoes in Australia and notified to the National Notifiable Diseases Surveillance System.


Asunto(s)
Infecciones por Arbovirus/epidemiología , Malaria/epidemiología , Animales , Informes Anuales como Asunto , Infecciones por Arbovirus/historia , Infecciones por Arbovirus/transmisión , Australia/epidemiología , Pollos/virología , Historia del Siglo XXI , Humanos , Malaria/historia , Malaria/transmisión , Vigilancia de la Población , Vigilancia de Guardia
11.
Int J Health Geogr ; 10: 8, 2011 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-21255449

RESUMEN

BACKGROUND: Murray Valley encephalitis virus (MVEV) is a mosquito-borne Flavivirus (Flaviviridae: Flavivirus) which is closely related to Japanese encephalitis virus, West Nile virus and St. Louis encephalitis virus. MVEV is enzootic in northern Australia and Papua New Guinea and epizootic in other parts of Australia. Activity of MVEV in Western Australia (WA) is monitored by detection of seroconversions in flocks of sentinel chickens at selected sample sites throughout WA. Rainfall is a major environmental factor influencing MVEV activity. Utilising data on rainfall and seroconversions, statistical relationships between MVEV occurrence and rainfall can be determined. These relationships can be used to predict MVEV activity which, in turn, provides the general public with important information about disease transmission risk. Since ground measurements of rainfall are sparse and irregularly distributed, especially in north WA where rainfall is spatially and temporally highly variable, alternative data sources such as remote sensing (RS) data represent an attractive alternative to ground measurements. However, a number of competing alternatives are available and careful evaluation is essential to determine the most appropriate product for a given problem. RESULTS: The Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 product was chosen from a range of RS rainfall products to develop rainfall-based predictor variables and build logistic regression models for the prediction of MVEV activity in the Kimberley and Pilbara regions of WA. Two models employing monthly time-lagged rainfall variables showed the strongest discriminatory ability of 0.74 and 0.80 as measured by the Receiver Operating Characteristics area under the curve (ROC AUC). CONCLUSIONS: TMPA data provide a state-of-the-art data source for the development of rainfall-based predictive models for Flavivirus activity in tropical WA. Compared to ground measurements these data have the advantage of being collected spatially regularly, irrespective of remoteness. We found that increases in monthly rainfall and monthly number of days above average rainfall increased the risk of MVEV activity in the Pilbara at a time-lag of two months. Increases in monthly rainfall and monthly number of days above average rainfall increased the risk of MVEV activity in the Kimberley at a lag of three months.


Asunto(s)
Infecciones por Arbovirus/epidemiología , Arbovirus/crecimiento & desarrollo , Lluvia , Nave Espacial/estadística & datos numéricos , Clima Tropical , Animales , Infecciones por Arbovirus/transmisión , Área Bajo la Curva , Pollos , Interpretación Estadística de Datos , Salud Global , Humanos , Modelos Logísticos , Modelos Estadísticos , Papúa Nueva Guinea/epidemiología , Curva ROC , Tecnología de Sensores Remotos , Medición de Riesgo , Estadísticas no Paramétricas , Factores de Tiempo , Australia Occidental/epidemiología
12.
mSphere ; 5(3)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32554715

RESUMEN

We describe two new insect-specific flaviviruses (ISFs) isolated from mosquitoes in Australia, Binjari virus (BinJV) and Hidden Valley virus (HVV), that grow efficiently in mosquito cells but fail to replicate in a range of vertebrate cell lines. Phylogenetic analysis revealed that BinJV and HVV were closely related (90% amino acid sequence identity) and clustered with lineage II (dual-host affiliated) ISFs, including the Lammi and Nounané viruses. Using a panel of monoclonal antibodies prepared to BinJV viral proteins, we confirmed a close relationship between HVV and BinJV and revealed that they were antigenically quite divergent from other lineage II ISFs. We also constructed chimeric viruses between BinJV and the vertebrate-infecting West Nile virus (WNV) by swapping the structural genes (prM and E) to produce BinJ/WNVKUN-prME and WNVKUN/BinJV-prME. This allowed us to assess the role of different regions of the BinJV genome in vertebrate host restriction and revealed that while BinJV structural proteins facilitated entry to vertebrate cells, the process was inefficient. In contrast, the BinJV replicative components in wild-type BinJV and BinJ/WNVKUN-prME failed to initiate replication in a wide range of vertebrate cell lines at 37°C, including cells lacking components of the innate immune response. However, trace levels of replication of BinJ/WNVKUN-prME could be detected in some cultures of mouse embryo fibroblasts (MEFs) deficient in antiviral responses (IFNAR-/- MEFs or RNase L-/- MEFs) incubated at 34°C after inoculation. This suggests that BinJV replication in vertebrate cells is temperature sensitive and restricted at multiple stages of cellular infection, including inefficient cell entry and susceptibility to antiviral responses.IMPORTANCE The globally important flavivirus pathogens West Nile virus, Zika virus, dengue viruses, and yellow fever virus can infect mosquito vectors and be transmitted to humans and other vertebrate species in which they cause significant levels of disease and mortality. However, the subgroup of closely related flaviviruses, known as lineage II insect-specific flaviviruses (Lin II ISFs), only infect mosquitoes and cannot replicate in cells of vertebrate origin. Our data are the first to uncover the mechanisms that restrict the growth of Lin II ISFs in vertebrate cells and provides new insights into the evolution of these viruses and the mechanisms associated with host switching that may allow new mosquito-borne viral diseases to emerge. The new reagents generated in this study, including the first Lin II ISF-reactive monoclonal antibodies and Lin II ISF mutants and chimeric viruses, also provide new tools and approaches to enable further research advances in this field.


Asunto(s)
Antígenos Virales/genética , Culicidae/virología , Flavivirus/clasificación , Flavivirus/inmunología , Filogenia , Replicación Viral , Animales , Australia , Línea Celular , Pollos , Chlorocebus aethiops , Evolución Molecular , Flavivirus/aislamiento & purificación , Genoma Viral , Interacciones Microbiota-Huesped , Humanos , Mamíferos , Mosquitos Vectores/virología , Especificidad de la Especie , Células Vero
13.
Viruses ; 12(10)2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066222

RESUMEN

The Mesoniviridae are a newly assigned family of viruses in the order Nidovirales. Unlike other nidoviruses, which include the Coronaviridae, mesoniviruses are restricted to mosquito hosts and do not infect vertebrate cells. To date there is little information on the morphological and antigenic characteristics of this new group of viruses and a dearth of mesonivirus-specific research tools. In this study we determined the genetic relationships of recent Australian isolates of Alphamesonivirus 4 (Casuarina virus-CASV) and Alphamesonivirus 1 (Nam Dinh virus-NDiV), obtained from multiple mosquito species. Australian isolates of NDiV showed high-level similarity to the prototype NDiV isolate from Vietnam (99% nucleotide (nt) and amino acid (aa) identity). Isolates of CASV from Central Queensland were genetically very similar to the prototype virus from Darwin (95-96% nt and 91-92% aa identity). Electron microscopy studies demonstrated that virion diameter (≈80 nm) and spike length (≈10 nm) were similar for both viruses. Monoclonal antibodies specific to CASV and NDiV revealed a close antigenic relationship between the two viruses with 13/34 mAbs recognising both viruses. We also detected NDiV RNA on honey-soaked nucleic acid preservation cards fed on by wild mosquitoes supporting a possible mechanism of horizontal transmission between insects in nature.


Asunto(s)
Antígenos Virales/inmunología , Culicidae/virología , Transmisión de Enfermedad Infecciosa , Nidovirales/genética , Nidovirales/inmunología , Animales , Australia , Nidovirales/clasificación , Filogenia , Análisis de Secuencia de ADN , Vietnam , Virión
14.
J Vector Ecol ; 44(1): 187-194, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31124223

RESUMEN

In 2016, modified CO2 -baited encephalitis virus surveillance (EVS) traps were evaluated for flavivirus surveillance in the Northern Territory, Australia. The traps were fitted with honey-soaked nucleic acid preservation cards (FTATM ) for mosquitoes to expectorate virus while feeding on the cards. Cards were tested for the presence of selected arboviruses, with two cards testing positive for Kunjin virus and Alfuy, while sentinel chickens tested in parallel also showed Kunjin virus activity at the same time. The results from the cards and vector mosquito feeding rates indicate that CO2 -baited EVS traps coupled with honey-baited FTATM cards are an effective tool for broad-scale arbovirus surveillance.


Asunto(s)
Infecciones por Arbovirus/veterinaria , Arbovirus/aislamiento & purificación , Culicidae/virología , Mosquitos Vectores/virología , ARN Viral/aislamiento & purificación , Vigilancia de Guardia , Distribución Animal , Animales , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/virología , Dióxido de Carbono , Pollos , Northern Territory/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología
15.
Artículo en Inglés | MEDLINE | ID: mdl-30982295

RESUMEN

This report describes the epidemiology of mosquito-borne diseases of public health importance in Australia during the 2014­15 season (1 July 2014 to 30 June 2015) and includes data from human notifications, sentinel chicken, vector and virus surveillance programs. The National Notifiable Diseases Surveillance System received notifications for 12,849 cases of disease transmitted by mosquitoes during the 2014­15 season. The Australasian alphaviruses Barmah Forest virus and Ross River virus accounted for 83% (n=10,723) of notifications. However, over-diagnosis and possible false positive diagnostic test results for these two infections mean that the true burden of infection is likely overestimated, and as a consequence, revised case definitions were implemented from 1 January 2016. There were 151 notifications of imported chikungunya virus infection. There were 74 notifications of dengue virus infection acquired in Australia and 1,592 cases acquired overseas, with an additional 34 cases for which the place of acquisition was unknown. Imported cases of dengue were most frequently acquired in Indonesia (66%). There were 7 notifications of Zika virus infection. No cases of locally-acquired malaria were notified during the 2014­15 season, though there were 259 notifications of overseas-acquired malaria and one notification for which no information on the place of acquisition was supplied. Imported cases of malaria were most frequently acquired in southern and eastern Africa (23%) and Pacific Island countries (20%). In 2014­15, arbovirus and mosquito surveillance programs were conducted in most of the states and territories. Surveillance for exotic mosquitoes at international ports of entry continues to be a vital part of preventing the establishment of vectors of mosquito-borne diseases such as dengue to new areas of Australia. In 2014-15, there was a sharp increase in the number of exotic mosquitoes detected at the Australian border, with 36 separate exotic mosquito detections made, representing a 280% increase from the 2013-14 period where there were 13 exotic mosquito detections.

16.
Emerg Infect Dis ; 14(11): 1736-8, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18976557

RESUMEN

To determine whether relocating domestic pigs, the amplifying host of Japanese encephalitis virus (JEV), decreased the risk for JEV transmission to humans in northern Australia, we collected mosquitoes for virus detection. Detection of JEV in mosquitoes after pig relocation indicates that pig relocation did not eliminate JEV risk.


Asunto(s)
Crianza de Animales Domésticos/métodos , Culex/virología , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa/prevención & control , Insectos Vectores/virología , Sus scrofa/parasitología , Animales , Australia/epidemiología , Culex/fisiología , Ecosistema , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/transmisión , Humanos , Insectos Vectores/fisiología , Sus scrofa/virología
17.
Am J Trop Med Hyg ; 99(4): 1066-1073, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30182918

RESUMEN

Mosquito and virus surveillance systems are widely used in Western Australia (WA) to support public health efforts to reduce mosquito-borne disease. However, these programs are costly to maintain on a long-term basis. Therefore, we aimed to assess the validity of mosquito numbers and Ross River virus (RRV) isolates from surveillance trap sites as predictors of human RRV cases in south-west WA between 2003 and 2014. Using negative binomial regression modeling, mosquito surveillance was found to be a useful tool for predicting human RRV cases. In eight of the nine traps, when adjusted for season, there was an increased risk of RRV cases associated with elevated mosquito numbers detected 1 month before the onset of human cases for at least one quartile compared with the reference group. The most predictive urban trap sites were located near saltmarsh mosquito habitat, bushland that could sustain macropods and densely populated residential suburbs. This convergence of environments could allow enzootic transmission of RRV to spillover and infect the human population. Close proximity of urban trap sites to each other suggested these sites could be reduced. Ross River virus isolates were infrequent at some trap sites, so ceasing RRV isolation from mosquitoes at these sites or where isolates were not predictive of human cases could be considered. In future, trap sites could be reduced for routine surveillance, allowing other environments to be monitored to broaden the understanding of RRV ecology in the region. A more cost-effective and efficient surveillance program may result from these modifications.


Asunto(s)
Infecciones por Alphavirus/prevención & control , Infecciones por Arbovirus/prevención & control , Culicidae/virología , Monitoreo Epidemiológico , Mosquitos Vectores/virología , Virus del Río Ross/patogenicidad , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/transmisión , Infecciones por Alphavirus/virología , Animales , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/transmisión , Infecciones por Arbovirus/virología , Ecosistema , Humanos , Modelos Estadísticos , Estudios Retrospectivos , Virus del Río Ross/fisiología , Estaciones del Año , Australia Occidental/epidemiología
18.
PLoS Negl Trop Dis ; 12(10): e0006886, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30356234

RESUMEN

Arthropod-borne flaviviruses such as yellow fever (YFV), Zika and dengue viruses continue to cause significant human disease globally. These viruses are transmitted by mosquitoes when a female imbibes an infected blood-meal from a viremic vertebrate host and expectorates the virus into a subsequent host. Bamaga virus (BgV) is a flavivirus recently discovered in Culex sitiens subgroup mosquitoes collected from Cape York Peninsula, Australia. This virus phylogenetically clusters with the YFV group, but is potentially restricted in most vertebrates. However, high levels of replication in an opossum cell line (OK) indicate a potential association with marsupials. To ascertain whether BgV could be horizontally transmitted by mosquitoes, the vector competence of two members of the Cx. sitiens subgroup, Cx. annulirostris and Cx. sitiens, for BgV was investigated. Eleven to thirteen days after imbibing an infectious blood-meal, infection rates were 11.3% and 18.8% for Cx. annulirostris and Cx. sitiens, respectively. Cx. annulirostris transmitted the virus at low levels (5.6% had BgV-positive saliva overall); Cx. sitiens did not transmit the virus. When mosquitoes were injected intrathoracially with BgV, the infection and transmission rates were 100% and 82%, respectively, for both species. These results provided evidence for the first time that BgV can be transmitted horizontally by Cx. annulirostris, the primary vector of pathogenic zoonotic flaviviruses in Australia. We also assessed whether BgV could interfere with replication in vitro, and infection and transmission in vivo of super-infecting pathogenic Culex-associated flaviviruses. BgV significantly reduced growth of Murray Valley encephalitis and West Nile (WNV) viruses in vitro. While prior infection with BgV by injection did not inhibit WNV super-infection of Cx. annulirostris, significantly fewer BgV-infected mosquitoes could transmit WNV than mock-injected mosquitoes. Overall, these data contribute to our understanding of flavivirus ecology, modes of transmission by Australian mosquitoes and mechanisms for super-infection interference.


Asunto(s)
Culex/virología , Flavivirus/fisiología , Mosquitos Vectores/virología , Interferencia Viral , Replicación Viral , Animales , Australia , Línea Celular , Transmisión de Enfermedad Infecciosa , Femenino , Infecciones por Flavivirus/transmisión
19.
BMC Evol Biol ; 7: 100, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17598922

RESUMEN

BACKGROUND: The mosquito Culex annulirostris Skuse (Diptera: Culicidae) is the major vector of endemic arboviruses in Australia and is also responsible for the establishment of the Japanese encephalitis virus (JEV) in southern Papua New Guinea (PNG) as well as its incursions into northern Australia. Papua New Guinea and mainland Australia are separated by a small stretch of water, the Torres Strait, and its islands. While there has been regular JEV activity on these islands, JEV has not established on mainland Australia despite an abundance of Cx. annulirostris and porcine amplifying hosts. Despite the public health significance of this mosquito and the fact that its adults show overlapping morphology with close relative Cx. palpalis Taylor, its evolution and genetic structure remain undetermined. We address a hypothesis that there is significant genetic diversity in Cx. annulirostris and that the identification of this diversity will shed light on the paradox that JEV can cycle on an island 70 km from mainland Australia while not establishing in Australia itself. RESULTS: We sequenced 538 bp of the mitochondrial DNA cytochrome oxidase I gene from 273 individuals collected from 43 localities in Australia and the southwest Pacific region to describe the phylogeography of Cx. annulirostris and its sister species Cx. palpalis. Maximum Likelihood and Bayesian analyses reveal supporting evidence for multiple divergent lineages that display geographic restriction. Culex palpalis contained three divergent lineages geographically restricted to southern Australia, northern Australia and Papua New Guinea (PNG). Culex annulirostris contained five geographically restricted divergent lineages, with one lineage restricted to the Solomon Islands and two identified mainly within Australia while two other lineages showed distributions in PNG and the Torres Strait Islands with a southern limit at the top of Australia's Cape York Peninsula. CONCLUSION: The existence of divergent mitochondrial lineages within Cx. annulirostris and Cx. palpalis helps explain the difficulty of using adult morphology to identify Cx. annulirostris and its ecological diversity. Notably, the southern limit of the PNG lineages of Cx. annulirostris coincides exactly with the current southern limit of JEV activity in Australasia suggesting that variation in these COI lineages may be the key to why JEV has not yet established yet on mainland Australia.


Asunto(s)
Biodiversidad , Culex/genética , Virus de la Encefalitis Japonesa (Especie)/crecimiento & desarrollo , Insectos Vectores/genética , Animales , Australia , Teorema de Bayes , Culex/clasificación , Culex/virología , ADN Mitocondrial/genética , ADN Espaciador Ribosómico/genética , Complejo IV de Transporte de Electrones/genética , Virus de la Encefalitis Japonesa (Especie)/genética , Genes de Insecto , Variación Genética , Insectos Vectores/clasificación , Insectos Vectores/virología , Funciones de Verosimilitud , Papúa Nueva Guinea , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA