Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Antimicrob Chemother ; 77(9): 2441-2447, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35770844

RESUMEN

OBJECTIVES: Neisseria gonorrhoeae is an exclusively human pathogen that commonly infects the urogenital tract resulting in gonorrhoea. Empirical treatment of gonorrhoea with antibiotics has led to multidrug resistance and the need for new therapeutics. Inactivation of lipooligosaccharide phosphoethanolamine transferase A (EptA), which attaches phosphoethanolamine to lipid A, results in attenuation of the pathogen in infection models. Small molecules that inhibit EptA are predicted to enhance natural clearance of gonococci via the human innate immune response. METHODS: A library of small-fragment compounds was tested for the ability to enhance susceptibility of the reference strain N. gonorrhoeae FA1090 to polymyxin B. The effect of these compounds on lipid A synthesis and viability in models of infection were tested. RESULTS: Three compounds, 135, 136 and 137, enhanced susceptibility of strain FA1090 to polymyxin B by 4-fold. Pre-treatment of bacterial cells with all three compounds resulted in enhanced killing by macrophages. Only lipid A from bacterial cells exposed to compound 137 showed a 17% reduction in the level of decoration of lipid A with phosphoethanolamine by MALDI-TOF MS analysis and reduced stimulation of cytokine responses in THP-1 cells. Binding of 137 occurred with higher affinity to purified EptA than the starting material, as determined by 1D saturation transfer difference NMR. Treatment of eight MDR strains with 137 increased susceptibility to polymyxin B in all cases. CONCLUSIONS: Small molecules have been designed that bind to EptA, inhibit addition of phosphoethanolamine to lipid A and can sensitize N. gonorrhoeae to killing by macrophages.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Antibacterianos/metabolismo , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Farmacorresistencia Bacteriana , Etanolaminofosfotransferasa/metabolismo , Etanolaminas , Gonorrea/tratamiento farmacológico , Humanos , Lípido A/química , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacología
2.
J Lipid Res ; 61(11): 1437-1449, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32839198

RESUMEN

Among the virulence factors in Neisseria infections, a major inducer of inflammatory cytokines is the lipooligosaccharide (LOS). The activation of NF-κB via extracellular binding of LOS or lipopolysaccharide (LPS) to the toll-like receptor 4 and its coreceptor, MD-2, results in production of pro-inflammatory cytokines that initiate adaptive immune responses. LOS can also be absorbed by cells and activate intracellular inflammasomes, causing the release of inflammatory cytokines and pyroptosis. Studies of LOS and LPS have shown that their inflammatory potential is highly dependent on lipid A phosphorylation and acylation, but little is known on the location and pattern of these posttranslational modifications. Herein, we report on the localization of phosphoryl groups on phosphorylated meningococcal lipid A, which has two to three phosphate and zero to two phosphoethanolamine substituents. Intact LOS with symmetrical hexa-acylated and asymmetrical penta-acylated lipid A moieties was subjected to high-resolution ion mobility spectrometry MALDI-TOF MS. LOS molecular ions readily underwent in-source decay to give fragments of the oligosaccharide and lipid A formed by cleavage of the ketosidic linkage, which enabled performing MS/MS (pseudo-MS3). The resulting spectra revealed several patterns of phosphoryl substitution on lipid A, with certain species predominating. The extent of phosphoryl substitution, particularly phosphoethanolaminylation, on the 4'-hydroxyl was greater than that on the 1-hydroxyl. The heretofore unrecognized phosphorylation patterns of lipid A of meningococcal LOS that we detected are likely determinants of both pathogenicity and the ability of the bacteria to evade the innate immune system.


Asunto(s)
Lípido A/análisis , Neisseria meningitidis/química , Conformación de Carbohidratos , Lípido A/metabolismo , Neisseria meningitidis/metabolismo , Fosforilación , Espectrometría de Masas en Tándem
3.
Proc Natl Acad Sci U S A ; 114(9): 2218-2223, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193899

RESUMEN

Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.


Asunto(s)
Proteínas Bacterianas/química , Etanolaminofosfotransferasa/química , Lípido A/química , Neisseria meningitidis/química , Periplasma/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Lípido A/metabolismo , Simulación de Dinámica Molecular , Neisseria meningitidis/enzimología , Periplasma/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
4.
J Antimicrob Chemother ; 74(11): 3245-3251, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31424547

RESUMEN

OBJECTIVES: Cell-penetrating peptides (CPPs) have been evaluated for intracellular delivery of molecules and several CPPs have bactericidal activity. Our objectives were to determine the effect of a 12 amino acid CPPs on survival and on the invasive and inflammatory potential of Neisseria gonorrhoeae. METHODS: Survival of MDR and human challenge strains of N. gonorrhoeae grown in cell culture medium with 10% FBS was determined after treatment with the CPP and human antimicrobial peptide LL-37 for 4 h. Confocal microscopy was used to examine penetration of FITC-labelled CPP into bacterial cells. The ability of the CPP to prevent invasion of human ME-180 cervical epithelial cells and to reduce the induction of TNF-α in human THP-1 monocytic cells in response to gonococcal infection was assessed. Cytotoxicity of the CPP towards the THP-1 cells was determined. RESULTS: The CPP was bactericidal, with 95%-100% killing of all gonococcal strains at 100 µM. Confocal microscopy of gonococci incubated with FITC-labelled CPP revealed the penetration of the peptide. CPP treatment of N. gonorrhoeae inhibited gonococcal invasion of ME-180 cells and reduced the expression of TNF-α induced in THP-1 cells by gonococci. The CPP showed no cytotoxicity towards human THP-1 cells. CONCLUSIONS: Based on these promising results, future studies will focus on testing of CPP in the presence of other types of host cells and exploration of structural modifications of the CPP that could decrease its susceptibility to proteolysis and increase its potency.


Asunto(s)
Antibacterianos/farmacología , Péptidos de Penetración Celular/farmacología , Neisseria gonorrhoeae/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos de Penetración Celular/química , Cuello del Útero/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Femenino , Humanos , Monocitos/efectos de los fármacos , Monocitos/microbiología , Células THP-1 , Factor de Necrosis Tumoral alfa/análisis , Catelicidinas
5.
J Lipid Res ; 59(10): 1893-1905, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30049709

RESUMEN

The pathogenicity of Campylobacter concisus, increasingly found in the human gastrointestinal (GI) tract, is unclear. Some studies indicate that its role in GI conditions has been underestimated, whereas others suggest that the organism has a commensal-like phenotype. For the enteropathogen C. jejuni, the lipooligosaccharide (LOS) is a main driver of virulence. We investigated the LOS structure of four C. concisus clinical isolates and correlated the inflammatory potential of each isolate with bacterial virulence. Mass spectrometric analyses of lipid A revealed a novel hexa-acylated diglucosamine moiety with two or three phosphoryl substituents. Molecular and fragment ion analysis indicated that the oligosaccharide portion of the LOS had only a single phosphate and lacked phosphoethanolamine and sialic acid substitution, which are hallmarks of the C. jejuni LOS. Consistent with our structural findings, C. concisus LOS and live bacteria induced less TNF-α secretion in human monocytes than did C. jejuni Furthermore, the C. concisus bacteria were less virulent than C. jejuni in a Galleria mellonella infection model. The correlation of the novel lipid A structure, decreased phosphorylation, and lack of sialylation along with reduced inflammatory potential and virulence support the significance of the LOS as a determinant in the relative pathogenicity of C. concisus.


Asunto(s)
Campylobacter/metabolismo , Campylobacter/patogenicidad , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Campylobacter/genética , Campylobacter/fisiología , Línea Celular , Genómica , Humanos , Inflamación/microbiología , Lípido A/química , Lipopolisacáridos/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Virulencia
6.
J Antimicrob Chemother ; 73(8): 2064-2071, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29726994

RESUMEN

Objectives: Inhibitors of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which catalyses the second step in the biosynthesis of lipid A, have been developed as potential antibiotics for Gram-negative infections. Our objectives were to determine the effect of LpxC inhibition on the in vitro survival and inflammatory potential of Neisseria gonorrhoeae. Methods: Survival of four human challenge strains was determined after treatment with two LpxC inhibitors for 2 and 4 h. To confirm results from treatment and assess their anti-inflammatory effect, the expression of TNF-α by human THP-1 monocytic cells infected with bacteria in the presence of the LpxC inhibitors was quantified. Cytotoxicity of inhibitors for THP-1 cells was evaluated by release of lactate dehydrogenase. Survival of five MDR strains was determined after 2 h of treatment with an LpxC inhibitor and the effect of co-treatment on MICs of ceftriaxone and azithromycin was examined. Results: The inhibitors had bactericidal activity against the four human challenge and five MDR strains with one compound exhibiting complete killing at ≥5 mg/L after either 2 or 4 h of treatment. Treatment of gonococci infecting THP-1 monocytic cells reduced the levels of TNF-α probably owing to reduced numbers of bacteria and a lower level of expression of lipooligosaccharide. Neither inhibitor exhibited cytotoxicity for THP-1 cells. The MIC of azithromycin was slightly lowered by sublethal treatment of two MDR strains with an LpxC inhibitor. Conclusions: Our in vitro results demonstrated promising efficacy of LpxC inhibition of N. gonorrhoeae that warrants further investigation particularly owing to the rise in MDR gonorrhoea.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Neisseria gonorrhoeae/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Monocitos/citología , Monocitos/microbiología , Neisseria gonorrhoeae/enzimología , Células THP-1 , Factor de Necrosis Tumoral alfa/inmunología
7.
Reproduction ; 155(2): 153-166, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29326135

RESUMEN

Our overall goal is to create a three-dimensional human cell-based testicular model for toxicological and spermatogenesis studies. Methods to purify the major somatic testicular cells, namely Leydig cells (LCs), peritubular myoid cells (PCs) and Sertoli cells (SCs), from rats, mice and guinea pigs have been reported. In humans, the isolation of populations enriched for primary LCs, PCs or SCs also have described. One objective of this study was to determine if populations of cells enriched for all three of these cell types can be isolated from testes of single human donors, and we were successful in doing so from testes of three donors. Testes tissues were enzymatically digested, gravity sedimented and Percoll filtered to isolate populations enriched for LCs, PCs and SCs. LCs and PCs were identified by colorimetric detection of the expression of prototypical enzymes. Division of PCs and SCs in culture has been reported. We observed that primary human LCs could divide in culture by incorporation of 5-ethynyl-2'-deoxyuridine. SCs were identified and their functionality was demonstrated by the formation of tight junctions as shown by the expression of tight junction proteins, increased transepithelial electrical resistance, polarized secretion of biomolecules and inhibition of lucifer yellow penetration. Furthermore, we found that human SC feeder layers could facilitate germ cell progression of human embryonic stem cells (hESCs) by microarray analysis of gene expression.


Asunto(s)
Separación Celular/métodos , Técnicas de Cocultivo/métodos , Células Madre Embrionarias/citología , Células Intersticiales del Testículo/citología , Células de Sertoli/citología , Adulto , Células Cultivadas , Células Madre Embrionarias/metabolismo , Humanos , Células Intersticiales del Testículo/metabolismo , Masculino , Persona de Mediana Edad , Células de Sertoli/metabolismo , Espermatogénesis , Testículo
8.
J Biol Chem ; 291(7): 3224-38, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26655715

RESUMEN

The degree of phosphorylation and phosphoethanolaminylation of lipid A on neisserial lipooligosaccharide (LOS), a major cell-surface antigen, can be correlated with inflammatory potential and the ability to induce immune tolerance in vitro. On the oligosaccharide of the LOS, the presence of phosphoethanolamine and sialic acid substituents can be correlated with in vitro serum resistance. In this study, we analyzed the structure of the LOS from 40 invasive isolates and 25 isolates from carriers of Neisseria meningitidis without disease. Invasive strains were classified as groups 1-3 that caused meningitis, septicemia without meningitis, and septicemia with meningitis, respectively. Intact LOS was analyzed by high resolution matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Prominent peaks for lipid A fragment ions with three phosphates and one phosphoethanolamine were detected in all LOS analyzed. LOS from groups 2 and 3 had less abundant ions for highly phosphorylated lipid A forms and induced less TNF-α in THP-1 monocytic cells compared with LOS from group 1. Lipid A from all invasive strains was hexaacylated, whereas lipid A of 6/25 carrier strains was pentaacylated. There were fewer O-acetyl groups and more phosphoethanolamine and sialic acid substitutions on the oligosaccharide from invasive compared with carrier isolates. Bioinformatic and genomic analysis of LOS biosynthetic genes indicated significant skewing to specific alleles, dependent on the disease outcome. Our results suggest that variable LOS structures have multifaceted effects on homeostatic innate immune responses that have critical impact on the pathophysiology of meningococcal infections.


Asunto(s)
Antígenos Bacterianos/toxicidad , Portador Sano/microbiología , Lipopolisacáridos/toxicidad , Meningitis Meningocócica/microbiología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis Serogrupo B/patogenicidad , Neisseria meningitidis Serogrupo C/patogenicidad , Acilación , Adolescente , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/química , Portador Sano/sangre , Portador Sano/líquido cefalorraquídeo , Portador Sano/inmunología , Línea Celular Tumoral , Biología Computacional , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/efectos de los fármacos , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/química , Meningitis Meningocócica/sangre , Meningitis Meningocócica/líquido cefalorraquídeo , Meningitis Meningocócica/inmunología , Infecciones Meningocócicas/sangre , Infecciones Meningocócicas/líquido cefalorraquídeo , Infecciones Meningocócicas/inmunología , Estructura Molecular , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Neisseria meningitidis Serogrupo B/clasificación , Neisseria meningitidis Serogrupo B/inmunología , Neisseria meningitidis Serogrupo B/metabolismo , Neisseria meningitidis Serogrupo C/clasificación , Neisseria meningitidis Serogrupo C/inmunología , Neisseria meningitidis Serogrupo C/metabolismo , Noruega , Fosforilación , Sepsis/sangre , Sepsis/líquido cefalorraquídeo , Sepsis/inmunología , Sepsis/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factor de Necrosis Tumoral alfa/metabolismo , Virulencia
9.
J Immunol ; 192(4): 1768-77, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24442429

RESUMEN

In this article, we report that retreatment of human monocytic THP-1 cells and primary monocytes with pathogenic Neisseria or with purified lipooligosaccharides (LOS) after previous exposure to LOS induced immune tolerance, as evidenced by reduced TNF-α and IL-1ß cytokine expression. LOS that we have previously shown to vary in their potential to activate TLR4 signaling, which was correlated with differences in levels of lipid A phosphorylation, had similarly variable ability to induce tolerance. Efficacy for induction of tolerance was proportional to the level of lipid A phosphorylation, as LOS from meningococcal strain 89I with the highest degree of phosphorylation was the most tolerogenic following retreatment with LOS or whole bacteria, compared with LOS from gonococcal strains 1291 and GC56 with reduced levels of phosphorylation. Hydrogen fluoride treatment of 89I LOS to remove phosphates rendered the LOS nontolerogenic. Tolerance induced by the more highly inflammatory meningococcal LOS was correlated with significantly greater downregulation of p38 activation, greater induction of the expression of A20 and of microRNA-146a, and greater reductions in IL-1R-associated kinase 1 and TRAF6 levels following LOS retreatment of cells. The role of miR-146a in regulation of induction of TNF-α was confirmed by transfecting cells with an inhibitor and a mimic of miR-146a. Our results provide a mechanistic framework for understanding the variable pathophysiology of meningococcal and gonococcal infections given that after an initial exposure, greater upregulation of microRNA-146a by more highly inflammatory LOS conversely leads to the suppression of immune responses, which would be expected to facilitate bacterial survival and dissemination.


Asunto(s)
Endotoxinas/inmunología , Tolerancia Inmunológica/inmunología , Lipopolisacáridos/inmunología , MicroARNs/metabolismo , Neisseria meningitidis/inmunología , Proteínas de Unión al ADN/biosíntesis , Activación Enzimática , Gonorrea/inmunología , Humanos , Ácido Fluorhídrico/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Inflamación/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Lípido A/metabolismo , Meningitis Meningocócica/inmunología , MicroARNs/biosíntesis , Monocitos/inmunología , Neisseria gonorrhoeae/inmunología , Proteínas Nucleares/biosíntesis , Fosforilación , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
J Biol Chem ; 288(27): 19661-72, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23629657

RESUMEN

Campylobacter jejuni is a leading cause of acute gastroenteritis. C. jejuni lipooligosaccharide (LOS) is a potent activator of Toll-like receptor (TLR) 4-mediated innate immunity. Structural variations of the LOS have been previously reported in the oligosaccharide (OS) moiety, the disaccharide lipid A (LA) backbone, and the phosphorylation of the LA. Here, we studied LOS structural variation between C. jejuni strains associated with different ecological sources and analyzed their ability to activate TLR4 function. MALDI-TOF MS was performed to characterize structural variation in both the OS and LA among 15 different C. jejuni isolates. Cytokine induction in THP-1 cells and primary monocytes was correlated with LOS structural variation in each strain. Additionally, structural variation was correlated with the source of each strain. OS sialylation, increasing abundance of LA d-glucosamine versus 2,3-diamino-2,3-dideoxy-d-glucose, and phosphorylation status all correlated with TLR4 activation as measured in THP-1 cells and monocytes. Importantly, LOS-induced inflammatory responses were similar to those elicited by live bacteria, highlighting the prominent contribution of the LOS component in driving host immunity. OS sialylation status but not LA structure showed significant association with strains clustering with livestock sources. Our study highlights how variations in three structural components of C. jejuni LOS alter TLR4 activation and consequent monocyte activation.


Asunto(s)
Campylobacter jejuni/metabolismo , Lipopolisacáridos/metabolismo , Monocitos/metabolismo , Receptor Toll-Like 4/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/inmunología , Conformación de Carbohidratos , Línea Celular Tumoral , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Lipopolisacáridos/genética , Lipopolisacáridos/inmunología , Monocitos/inmunología , Fosforilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
11.
Hum Reprod ; 29(6): 1279-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24532171

RESUMEN

STUDY QUESTION: Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood-testis barrier (BTB)? SUMMARY ANSWER: Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY: Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION: We examined the effects of two environmental toxicants: cadmium chloride (0.5-20 µM) and bisphenol A (0.4-200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE: Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by mislocalization of actin filament barbed end capping and bundling protein Eps8, and branched actin polymerization protein Arp3. Besides impeding actin dynamics, endocytic vesicle-mediated trafficking and the proper localization of actin regulatory proteins c-Src and annexin II in Sertoli cells were also affected. Results of statistical analysis demonstrate that these findings were not obtained by chance. LIMITATIONS, REASONS FOR CAUTION: (i) This study was done in vitro and might not extrapolate to the in vivo state, (ii) conclusions are based on the use of Sertoli cell samples from three men and (iii) it is uncertain if the concentrations of toxicants used in the experiments are reached in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Human Sertoli cells cultured in vitro provide a robust model to monitor environmental toxicant-mediated disruption of Sertoli cell BTB function and to study the mechanism(s) of toxicant-induced testicular dysfunction.


Asunto(s)
Actinas/metabolismo , Compuestos de Bencidrilo/farmacología , Cloruro de Cadmio/farmacología , Adhesión Celular/efectos de los fármacos , Contaminantes Ambientales/farmacología , Fenoles/farmacología , Células de Sertoli/efectos de los fármacos , Células Cultivadas , Humanos , Masculino , Células de Sertoli/metabolismo
12.
bioRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293026

RESUMEN

Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophil influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-NANA) scavenged from the host using LOS sialyltransferase (Lst), since Gc cannot make its own sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea.

13.
mBio ; 15(5): e0011924, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587424

RESUMEN

Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophilic influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid, which is scavenged from the host using LOS sialyltransferase (Lst) since Gc cannot make its sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress the oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea. IMPORTANCE: Neisseria gonorrhoeae, the bacterium that causes gonorrhea, is an urgent global health concern due to increasing infection rates, widespread antibiotic resistance, and its ability to thwart protective immune responses. The mechanisms by which Gc subverts protective immune responses remain poorly characterized. One way N. gonorrhoeae evades human immunity is by adding sialic acid that is scavenged from the host onto its lipooligosaccharide, using the sialyltransferase Lst. Here, we found that sialylation enhances N. gonorrhoeae survival from neutrophil assault and inhibits neutrophil activation, independently of the complement system. Our results implicate bacterial binding of sialic acid-binding lectins (Siglecs) on the neutrophil surface, which dampens neutrophil antimicrobial responses. This work identifies a new role for sialylation in protecting N. gonorrhoeae from cellular innate immunity, which can be targeted to enhance the human immune response in gonorrhea.


Asunto(s)
Gonorrea , Ácido N-Acetilneuramínico , Neisseria gonorrhoeae , Activación Neutrófila , Neutrófilos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Neisseria gonorrhoeae/inmunología , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Gonorrea/inmunología , Gonorrea/microbiología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Estallido Respiratorio , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune
14.
Mol Pharmacol ; 84(1): 25-40, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23580446

RESUMEN

Cyclooxygenase (COX)-2-derived prostanoids can influence several processes that are linked to carcinogenesis. We aimed to address the hypothesis that platelets contribute to aberrant COX-2 expression in HT29 colon carcinoma cells and to reveal the role of platelet-induced COX-2 on the expression of proteins involved in malignancy and marker genes of epithelial-mesenchymal transition (EMT). Human platelets cocultured with HT29 cells rapidly adhered to cancer cells and induced COX-2 mRNA expression, but not protein synthesis, which required the late release of platelet-derived growth factor and COX-2 mRNA stabilization. Platelet-induced COX-2-dependent prostaglandin E2 (PGE2) synthesis in HT29 cells was involved in the downregulation of p21(WAF1/CIP1) and the upregulation of cyclinB1 since these effects were prevented by rofecoxib (a selective COX-2 inhibitor) and rescued by exogenous PGE2. Galectin-3, which is highly expressed in HT29 cells, is unique among galectins because it contains a collagen-like domain. Thus, we studied the role of galectin-3 and platelet collagen receptors in platelet-induced COX-2 overexpression. Inhibitors of galectin-3 function (ß-lactose, a dominant-negative form of galectin-3, Gal-3C, and anti-galectin-3 antibody M3/38) or collagen receptor-mediated platelet adhesion (revacept, a dimeric platelet collagen receptor GPVI-Fc) prevented aberrant COX-2 expression. Inhibition of platelet-cancer cell interaction by revacept was more effective than rofecoxib in preventing platelet-induced mRNA changes of EMT markers, suggesting that direct cell-cell contact and aberrant COX-2 expression synergistically induced gene expression modifications associated with EMT. In conclusion, our findings provide the rationale for testing blockers of collagen binding sites, such as revacept, and galectin-3 inhibitors in the prevention of colon cancer metastasis in animal models, followed by studies in patients.


Asunto(s)
Plaquetas/efectos de los fármacos , Plaquetas/patología , Comunicación Celular/efectos de los fármacos , Neoplasias del Colon/sangre , Neoplasias del Colon/enzimología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Sitios de Unión , Plaquetas/enzimología , Plaquetas/metabolismo , Comunicación Celular/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Ciclina B1/genética , Ciclina B1/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/genética , Dinoprostona/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Galectina 3/antagonistas & inhibidores , Galectina 3/genética , Galectina 3/metabolismo , Expresión Génica/efectos de los fármacos , Glicoproteínas/farmacología , Células HT29 , Humanos , Fragmentos Fc de Inmunoglobulinas/farmacología , Lactonas/farmacología , Lactosa/farmacología , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , ARN Mensajero/genética , Receptores de Colágeno/genética , Receptores de Colágeno/metabolismo , Sulfonas/farmacología , Regulación hacia Arriba/efectos de los fármacos
15.
Front Microbiol ; 14: 1215946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779694

RESUMEN

The alarming rise of antibiotic resistance and the emergence of new vaccine technologies have increased the focus on vaccination to control gonorrhea. Neisseria gonorrhoeae strains FA1090 and MS11 have been used in challenge studies in human males. We used negative-ion MALDI-TOF MS to profile intact lipooligosaccharide (LOS) from strains MS11mkA, MS11mkC, FA1090 A23a, and FA1090 1-81-S2. The MS11mkC and 1-81-S2 variants were isolated from male volunteers infected with MS11mkA and A23a, respectively. LOS profiles were obtained after purification using the classical phenol water extraction method and by microwave-enhanced enzymatic digestion, which is more amenable for small-scale work. Despite detecting some differences in the LOS profiles, the same major species were observed, indicating that microwave-enhanced enzymatic digestion is appropriate for MS studies. The compositions determined for MS11mkA and mkC LOS were consistent with previous reports. FA1090 is strongly recognized by mAb 2C7, an antibody-binding LOS with both α- and ß-chains if the latter is a lactosyl group. The spectra of the A23a and 1-81-S2 FA1090 LOS were similar to each other and consistent with the expression of α-chain lacto-N-neotetraose and ß-chain lactosyl moieties that can both be acceptor sites for sialic acid substitution. 1-81-S2 LOS was analyzed after culture with and without media supplemented with cytidine-5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac), which N. gonorrhoeae needs to sialylate its LOS. LOS sialylation reduces the infectivity of gonococci in men, although it induces serum resistance in serum-sensitive strains and reduces killing by neutrophils and antimicrobial peptides. The infectivity of FA1090 in men is much lower than that of MS11mkC, but the reason for this difference is unclear. Interestingly, some peaks in the spectra of 1-81-S2 LOS after bacterial culture with CMP-Neu5Ac were consistent with disialylation of the LOS, which could be relevant to the reduced infectivity of FA1090 in men and could have implications regarding the phase variation of the LOS and the natural history of infection.

16.
Cardiovasc Res ; 119(15): 2536-2549, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37602717

RESUMEN

AIMS: Acute myocardial infarction (MI) causes inflammation, collagen deposition, and reparative fibrosis in response to myocyte death and, subsequently, a pathological myocardial remodelling process characterized by excessive interstitial fibrosis, driving heart failure (HF). Nonetheless, how or when to limit excessive fibrosis for therapeutic purposes remains uncertain. Galectin-3, a major mediator of organ fibrosis, promotes cardiac fibrosis and remodelling. We performed a preclinical assessment of a protein inhibitor of galectin-3 (its C-terminal domain, Gal-3C) to limit excessive fibrosis resulting from MI and prevent ventricular enlargement and HF. METHODS AND RESULTS: Gal-3C was produced by enzymatic cleavage of full-length galectin-3 or by direct expression of the truncated form in Escherichia coli. Gal-3C was intravenously administered for 7 days in acute MI models of young and aged rats, starting either pre-MI or 4 days post-MI. Echocardiography, haemodynamics, histology, and molecular and cellular analyses were performed to assess post-MI cardiac functionality and pathological fibrotic progression. Gal-3C profoundly benefitted left ventricular ejection fraction, end-systolic and end-diastolic volumes, haemodynamic parameters, infarct scar size, and interstitial fibrosis, with better therapeutic efficacy than losartan and spironolactone monotherapies over the 56-day study. Gal-3C therapy in post-MI aged rats substantially improved pump function and attenuated ventricular dilation, preventing progressive HF. Gal-3C in vitro treatment of M2-polarized macrophage-like cells reduced their M2-phenotypic expression of arginase-1 and interleukin-10. Gal-3C inhibited M2 polarization of cardiac macrophages during reparative response post-MI. Gal-3C impeded progressive fibrosis post-MI by down-regulating galectin-3-mediated profibrotic signalling cascades including a reduction in endogenous arginase-1 and inducible nitric oxide synthase (iNOS). CONCLUSION: Gal-3C treatment improved long-term cardiac function post-MI by reduction in the wound-healing response, and inhibition of inflammatory fibrogenic signalling to avert an augmentation of fibrosis in the periinfarct region. Thus, Gal-3C treatment prevented the infarcted heart from extensive fibrosis that accelerates the development of HF, providing a potential targeted therapy.


Asunto(s)
Cardiomiopatías , Galectina 3 , Infarto del Miocardio , Miocardio , Animales , Ratas , Arginasa/metabolismo , Cardiomiopatías/metabolismo , Fibrosis , Galectina 3/antagonistas & inhibidores , Infarto del Miocardio/patología , Miocardio/patología , Volumen Sistólico , Función Ventricular Izquierda , Remodelación Ventricular/fisiología
17.
J Biol Chem ; 286(51): 43622-43633, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22027827

RESUMEN

Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains.


Asunto(s)
Inmunoglobulina G/química , Lipopolisacáridos/química , Neisseria meningitidis/metabolismo , Oligosacáridos/química , Antígenos/química , Secuencia de Carbohidratos , Enfermedades Transmisibles/metabolismo , Genotipo , Humanos , Espectrometría de Masas/métodos , Vacunas Meningococicas/inmunología , Mutación , Oligonucleótidos/química
18.
Infect Immun ; 80(11): 4014-26, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22949553

RESUMEN

The interaction of the immune system with Neisseria commensals remains poorly understood. We have previously shown that phosphoethanolamine on the lipid A portion of lipooligosaccharide (LOS) plays an important role in Toll-like receptor 4 (TLR4) signaling. For pathogenic Neisseria, phosphoethanolamine is added to lipid A by the phosphoethanolamine transferase specific for lipid A, which is encoded by lptA. Here, we report that Southern hybridizations and bioinformatics analyses of genomic sequences from all eight commensal Neisseria species confirmed that lptA was absent in 15 of 17 strains examined but was present in N. lactamica. Mass spectrometry of lipid A and intact LOS revealed the lack of both pyrophosphorylation and phosphoethanolaminylation in lipid A of commensal species lacking lptA. Inflammatory signaling in human THP-1 monocytic cells was much greater with pathogenic than with commensal Neisseria strains that lacked lptA, and greater sensitivity to polymyxin B was consistent with the absence of phosphoethanolamine. Unlike the other commensals, whole bacteria of two N. lactamica commensal strains had low inflammatory potential, whereas their lipid A had high-level pyrophosphorylation and phosphoethanolaminylation and induced high-level inflammatory signaling, supporting previous studies indicating that this species uses mechanisms other than altering lipid A to support commensalism. A meningococcal lptA deletion mutant had reduced inflammatory potential, further illustrating the importance of lipid A pyrophosphorylation and phosphoethanolaminylation in the bioactivity of LOS. Overall, our results indicate that lack of pyrophosphorylation and phosphoethanolaminylation of lipid A contributes to the immune privilege of most commensal Neisseria strains by reducing the inflammatory potential of LOS.


Asunto(s)
Inflamación/inmunología , Lípido A/metabolismo , Neisseria/inmunología , Southern Blotting , Células Cultivadas , Biología Computacional , Humanos , Lípido A/inmunología , Neisseria/patogenicidad , Fosforilación , Transducción de Señal , Espectrometría de Masas en Tándem
19.
J Immunol ; 185(11): 6974-84, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21037101

RESUMEN

We have previously shown that the lipooligosaccharide (LOS) from Neisseria meningitidis and N. gonorrhoeae engages the TLR4-MD-2 complex. In this study, we report that LOS from different meningococcal and gonococcal strains have different potencies to activate NF-κB through TLR4-MD-2 and that the relative activation can be correlated with ion abundances in MALDI-TOF mass spectrometry that are indicative of the number of phosphoryl substituents on the lipid A (LA) component of the LOS. The LOSs from three of the strains, meningococcal strain 89I and gonococcal strains 1291 and GC56, representing high, intermediate, and low potency on NF-κB activation, respectively, differently activated cytokine expression through the TLR4-MD-2 pathway in monocytes. In addition to induction of typical inflammatory cytokines such as TNF-α, IL-1ß, and IL-6, MIP-1α and MIP-1ß also were significantly higher in cells treated with 89I LOS, which had the most phosphoryl substitutions on the LA compared with 1291 LOS and GC56 LOS. We found that LOS activated both the MyD88- and TRIF-dependent pathways through NF-κB and IFN regulatory factor 3 transcription factors, respectively. Moreover, LOS induced the expression of costimulatory molecule CD80 on the surfaces of monocytes via upregulation of IFN regulatory factor 1. These results suggest that phosphoryl moieties of LA from N. meningitidis and N. gonorrhoeae LOSs play an important role in activation of both the MyD88- and TRIF-dependent pathways. Our findings are consistent with the concept that bacteria modulate pathogen-associated molecular patterns by expression of phosphoryl moieties on the LA to optimize interactions with the host.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Lípido A/fisiología , Lipopolisacáridos/fisiología , Antígeno 96 de los Linfocitos/fisiología , Factor 88 de Diferenciación Mieloide/metabolismo , Neisseria gonorrhoeae/química , Neisseria meningitidis/química , Transducción de Señal/inmunología , Receptor Toll-Like 4/fisiología , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Antígeno B7-1/biosíntesis , Línea Celular , Humanos , Factor 1 Regulador del Interferón/biosíntesis , Factor 3 Regulador del Interferón/fisiología , Lípido A/química , Lipopolisacáridos/química , Antígeno 96 de los Linfocitos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/microbiología , Factor 88 de Diferenciación Mieloide/fisiología , FN-kappa B/fisiología , Neisseria gonorrhoeae/inmunología , Neisseria meningitidis/inmunología , Fosforilación/inmunología , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba/inmunología
20.
Front Endocrinol (Lausanne) ; 13: 895528, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634498

RESUMEN

Spermatogonial stem cells (SSCs) are a group of adult stem cells in the testis that serve as the foundation of continuous spermatogenesis and male fertility. SSCs are capable of self-renewal to maintain the stability of the stem cell pool and differentiation to produce mature spermatozoa. Dysfunction of SSCs leads to male infertility. Therefore, dissection of the regulatory network of SSCs is of great significance in understanding the fundamental molecular mechanisms of spermatogonial stem cell function in spermatogenesis and the pathogenesis of male infertility. Furthermore, a better understanding of SSC biology will allow us to culture and differentiate SSCs in vitro, which may provide novel stem cell-based therapy for assisted reproduction. This review summarizes the latest research progress on the regulation of SSCs, and the potential application of SSCs for fertility restoration through in vivo and in vitro spermatogenesis. We anticipate that the knowledge gained will advance the application of SSCs to improve male fertility. Furthermore, in vitro spermatogenesis from SSCs sets the stage for the production of SSCs from induced pluripotent stem cells (iPSCs) and subsequent spermatogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Infertilidad Masculina , Fertilidad , Humanos , Infertilidad Masculina/terapia , Masculino , Espermatogénesis , Espermatogonias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA