Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38867674

RESUMEN

We tested the hypothesis that compliance with the National Institute for Occupational Safety and Health (NIOSH) heat stress recommendations will prevent reductions in glomerular filtration rate (GFR) across a range of wet bulb globe temperatures (WBGTs) and work-rest ratios at a fixed work intensity. We also tested the hypothesis that non-compliance would result in a reduction in GFR compared to a work-rest matched compliant trial. Twelve healthy adults completed five trials (four NIOSH compliant, one non-compliant) that consisted of four hours of exposure to a range of WBGTs. Subjects walked on a treadmill (Hprod: ~430 W) and work-rest ratios (work per hour: 60, 45, 30, 15 min) were prescribed as a function of WBGT (24°C, 26.5°C, 28.5°C, 30°C, 36°C), and subjects drank a sport drink ad libitum. Peak core temperature (TC) and percentage change in body weight (%DBW) were measured. Creatinine clearance measured pre- and postexposure provided a primary marker of GFR. Peak TC did not differ among NIOSH compliant trials (p=0.065) but differed between compliant vs. non-compliant trials (p<0.001). %DBW did not differ among NIOSH compliant trials (p=0.131) or between compliant vs. non-compliant trials (p=0.185). Creatinine clearance did not change or differ among compliant trials (p³0.079). Creatinine clearance did not change or differ between compliant vs. non-compliant trials (p³0.661). Compliance with the NIOSH recommendations maintained GFR. Surprisingly, despite a greater heat strain in a non-compliant trial, GFR was maintained highlighting the potential relative importance of hydration.

2.
Am J Physiol Renal Physiol ; 326(5): F802-F813, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545652

RESUMEN

Men are likely at greater risk for heat-induced acute kidney injury compared with women, possibly due to differences in vascular control. We tested the hypothesis that the renal vasoconstrictor and vasodilator responses will be greater in younger women compared with men during passive heat stress. Twenty-five healthy adults [12 women (early follicular phase) and 13 men] completed two experimental visits, heat stress or normothermic time-control, assigned in a block-randomized crossover design. During heat stress, participants wore a water-perfused suit perfused with 50°C water. Core temperature was increased by ∼0.8°C in the first hour before commencing a 2-min cold pressor test (CPT). Core temperature remained clamped and at 1-h post-CPT, subjects ingested a whey protein shake (1.2 g of protein/kg body wt), and measurements were taken pre-, 75 min, and 150 min post-protein. Beat-to-beat blood pressure (Penaz method) was measured and segmental artery vascular resistance (VR, Doppler ultrasound) was calculated as segmental artery blood velocity ÷ mean arterial pressure. CPT-induced increases in segmental artery VR did not differ between trials (trial effect: P = 0.142) nor between men (heat stress: 1.5 ± 1.0 mmHg/cm/s, normothermia: 1.4 ± 1.0 mmHg/cm/s) and women (heat stress: 1.4 ± 1.2 mmHg/cm/s, normothermia: 2.1 ± 1.1 mmHg/cm/s) (group effect: P = 0.429). Reductions in segmental artery VR following oral protein loading did not differ between trials (trial effect: P = 0.080) nor between men (heat stress: -0.6 ± 0.8 mmHg/cm/s, normothermia: -0.6 ± 0.6 mmHg/cm/s) and women (heat stress: -0.5 ± 0.5 mmHg/cm/s, normothermia: -1.1 ± 0.6 mmHg/cm/s) (group effect: P = 0.204). Renal vasoconstrictor responses to the cold pressor test and vasodilator responses following an oral protein load during heat stress or normothermia do not differ between younger men and younger women in the early follicular phase of the menstrual cycle.NEW & NOTEWORTHY The mechanisms underlying greater heat-induced acute kidney injury risk in men versus women remain unknown. This study examined renal vascular control, including both vasodilatory (oral protein load) and vasoconstrictor (cold presser test) responses, during normothermia and heat stress and compared these responses between men and women. The results indicated that in both conditions neither renal vasodilatory nor vasoconstrictor responses differ between younger men and younger women.


Asunto(s)
Respuesta al Choque Térmico , Vasodilatación , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Respuesta al Choque Térmico/fisiología , Estudios Cruzados , Factores Sexuales , Resistencia Vascular , Riñón/irrigación sanguínea , Vasoconstricción , Circulación Renal , Arteria Renal , Trastornos de Estrés por Calor/fisiopatología , Presión Sanguínea/fisiología , Factores de Edad
3.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R357-R369, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436059

RESUMEN

Sufficiently cold-water temperatures (<7°C) are needed to elicit the sympathetic response to the cold pressor test using the hand. However, it is not known if stimulating the trigeminal nerve via face cooling, which increases both sympathetic and cardiac parasympathetic activity, also has a threshold temperature. We tested the hypothesis that peak autonomic activation during a progressive face cooling challenge would be achieved when the stimulus temperature is ≤7°C. Twelve healthy participants (age: 25 ± 3 yr, four women) completed our study. Six pliable bags, each containing water or an ice slurry (34°C, 28°C, 21°C, 14°C, 7°C, and 0°C) were applied sequentially to participants' forehead, eyes, and cheeks for 5 min each. Mean arterial pressure (photoplethysmography; index of sympathetic activity) and heart rhythm (3-lead ECG) were averaged in 1-min increments at the end of baseline and throughout each temperature condition. Heart rate variability in the time [(root mean square of successive differences (RMSSD)] and frequency [high-frequency (HF) power] domains was used to estimate cardiac parasympathetic activity. Data are presented as the increase from baseline ± SD. Mean arterial pressure only increased from baseline in the 7°C (13.1 ± 10.3 mmHg; P = 0.018) and 0°C (25.2 ± 7.8 mmHg; P < 0.001) conditions. Only the 0°C condition increased RMSSD (160.6 ± 208.9 ms; P = 0.009) and HF power (11,450 ± 14,555 ms2; P = 0.014) from baseline. Our data indicate that peak increases in sympathetic activity during face cooling are initiated at a higher forehead skin temperature than peak increases in cardiac parasympathetic activity.


Asunto(s)
Corazón , Temperatura Cutánea , Humanos , Femenino , Adulto Joven , Adulto , Presión Arterial/fisiología , Sistema Nervioso Autónomo , Frecuencia Cardíaca/fisiología , Frío , Agua , Presión Sanguínea/fisiología
4.
Undersea Hyperb Med ; 51(1): 59-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38615355

RESUMEN

Introduction: Indigenous populations renowned for apneic diving have comparatively large spleen volumes. It has been proposed that a larger spleen translates to heightened apnea-induced splenic contraction and elevations in circulating hemoglobin mass (Hbmass), which, in theory, improves O2 carrying and/or CO2/pH buffering capacities. However, the relation between resting spleen volume and apnea- induced increases in Hbmass is unknown. Therefore, we tested the hypothesis that resting spleen volume is positively related to apnea-induced increases in total Hbmass. Methods: Fourteen healthy adults (six women; 29 ± 5 years) completed a two-minute carbon monoxide rebreathe procedure to measure pre-apneas Hbmass and blood volume. Spleen length, width, and thickness were measured pre-and post-five maximal apneas via ultrasound. Spleen volume was calculated via the Pilström equation (test-retest CV:2 ± 2%). Hemoglobin concentration ([Hb]; g/dl) and hematocrit (%) were measured pre- and post-apneas via capillary blood samples. Post-apneas Hbmass was estimated as post-apnea [Hb] x pre-apnea blood volume. Data are presented as mean ± SD. Results: Spleen volume decreased from pre- (247 ± 95 mL) to post- (200 ± 82 mL, p<0.01) apneas. [Hb] (14.6 ± 1.2 vs. 14.9 ± 1.2 g/dL, p<0.01), hematocrit (44 ± 3 vs. 45 ± 3%, p=0.04), and Hbmass (1025 ± 322 vs. 1046 ± 339 g, p=0.03) increased from pre- to post-apneas. Pre-apneas spleen volume was unrelated to post-apneas increases in Hbmass (r=-0.02, p=0.47). O2 (+28 ± 31 mL, p<0.01) and CO2 (+31 ± 35 mL, p<0.01) carrying capacities increased post-apneas. Conclusion: Larger spleen volume is not associated with a greater rise in apneas-induced increases in Hbmass in non-apnea-trained healthy adults.


Asunto(s)
Apnea , Bazo , Adulto , Femenino , Humanos , Bazo/diagnóstico por imagen , Dióxido de Carbono , Volumen Sanguíneo , Hemoglobinas
5.
J Occup Environ Hyg ; 21(5): 326-341, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38512776

RESUMEN

Occupational heat stress increases the risk of acute kidney injury (AKI). This study presents a secondary analysis to generate novel hypotheses for future studies by investigating the diagnostic accuracy of thermal, hydration, and heart rate assessments in discriminating positive AKI risk following physical work in the heat in unacclimatized individuals. Unacclimatized participants (n = 13, 3 women, age: ∼23 years) completed four trials involving 2 h of exercise in a 39.7 ± 0.6 °C, 32 ± 3% relative humidity environment that differed by experimental manipulation of hyperthermia (i.e., cooling intervention) and dehydration (i.e., water drinking). Diagnostic accuracy was assessed via receiver operating characteristic curve analysis. Positive AKI risk was identified when the product of concentrations insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinase-2 [IGFBP7∙TIMP-2] exceeded 0.3 (ng∙mL-1)2∙1000-1. Peak absolute core temperature had the acceptable discriminatory ability (AUC = 0.71, p = 0.009), but a relatively large variance (AUC 95% CI: 0.57-0.86). Mean body temperature, urine specific gravity, urine osmolality, peak heart rate, and the peak percent of both maximum heart rate and heart rate reserve had poor discrimination (AUC = 0.66-0.69, p ≤ 0.051). Mean skin temperature, percent change in body mass and plasma volume, and serum sodium and osmolality had no discrimination (p ≥ 0.072). A peak increase in mean skin temperature of >4.7 °C had a positive likelihood ratio of 11.0 which suggests clinical significance. These data suggest that the absolute value of peak core temperature and the increase in mean skin temperature may be valuable to pursue in future studies as a biomarker for AKI risk in unacclimatized workers.


Asunto(s)
Lesión Renal Aguda , Frecuencia Cardíaca , Calor , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina , Humanos , Femenino , Frecuencia Cardíaca/fisiología , Masculino , Lesión Renal Aguda/diagnóstico , Calor/efectos adversos , Adulto Joven , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/orina , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Inhibidor Tisular de Metaloproteinasa-2/sangre , Deshidratación , Trastornos de Estrés por Calor , Adulto , Temperatura Corporal , Adolescente , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Enfermedades Profesionales/etiología
6.
J Head Trauma Rehabil ; 38(4): E318-E327, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36696236

RESUMEN

OBJECTIVE: To assess mild traumatic brain injury (mTBI)-related alterations in baseline (resting) salivary cortisol and cortisol reactivity to cognitive and exercise stressors, which are frequently encountered during mTBI rehabilitation and recovery. SETTING: Persons with mTBI were recruited from a level 1 trauma center emergency department. Uninjured controls (UCs) were recruited from the community. PARTICIPANTS: Participants were 37 individuals with mTBI and 24 UCs. All patients with mTBI were enrolled at 7 ± 3 days post-injury, met the American Congress of Rehabilitation Medicine definition of mTBI, and had no acute intracranial findings on clinical neuroimaging (if performed). DESIGN: A prospective cohort study design was used. All participants provided saliva samples 10 times during each of 2 visits spaced 3 weeks apart (1 week and 1 month post-injury for the mTBI group). Each visit included baseline saliva sampling and sampling to evaluate reactivity to a cognitive stressor (Paced Auditory Serial Addition Test) and physical stressor (Buffalo Concussion Treadmill Test [BCTT]). MAIN OUTCOME MEASURE: Natural log-transformed salivary cortisol was measured by enzyme immunoassay. Cortisol was predicted using a linear mixed-effects model by group (mTBI and UC), visit (1 week and 1 month), and saliva sample. RESULTS: Mean salivary cortisol was higher in the mTBI group (1.67 nmol/L [95% CI 1.42-1.72]) than in controls (1.30 nmol/L [1.12-1.47]), without an mTBI × time interaction. At 1 week, the mTBI group had greater cortisol reactivity in response to the BCTT. CONCLUSIONS: Higher cortisol in individuals with mTBI at 1 week and 1 month post-injury extends previous findings into the subacute recovery period. Furthermore, the mTBI group demonstrated a greater cortisol response to mild-to-moderate aerobic exercise (BCTT) at 1 week post-injury. Given the increasing role of exercise in mTBI rehabilitation, further research is warranted to replicate these findings and identify the clinical implications, if any, of enhanced hypothalamic-pituitary-adrenal axis responses to exercise in civilians with recent mTBI.


Asunto(s)
Conmoción Encefálica , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisario , Estudios Prospectivos , Sistema Hipófiso-Suprarrenal
7.
Undersea Hyperb Med ; 50(4): 359-372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055876

RESUMEN

Background: We tested the hypotheses that self-paced aerobic exercise performance is reduced following four hours of cold-water immersion when breathing air and further reduced when breathing 100% oxygen (O2). Nine healthy adults (four women; age 24 ± 3 years; body fat 17.9 ± 6.4%; VO2max 48±9 mL • kg • minute⁻¹) completed three visits: a no-immersion control trial and two experimental trials consisting of a four-hour cold-water immersion (20.1±0.3°C) either breathing air (FIO2 = 0.21) or O2 (FIO2 = 1.0). During the no-immersion control trial and following immersion in the experimental trials, subjects first completed a 60-minute ruck-march carrying 20% of body mass in a rucksack, immediately followed by an unweighted, self-paced 5-km time trial on a motorized treadmill. Core temperature, heart rate, and rating of perceived exertion were recorded every 1,000 meters during the 5-km time trial. Data are presented mean± SD. Time trial performance was reduced following immersion in both the 100% O2 trial (32±6 minutes; p=0.01) and air trial (32±5 minutes; p=0.01) compared to the control trial (28± 4 minutes). However, there was no difference between the 100% O2 and air trials (p=0.86). Heart rate, core temperature, and rating of perceived exertion increased during the time trial (time effect: p≺0.01), but were not different between trials (trial effect: p≥0.33). These findings suggest that prolonged cold-water immersion attenuates self-paced aerobic exercise performance, but does not appear to be further affected by breathing gas type.


Asunto(s)
Frío , Inmersión , Adulto , Femenino , Humanos , Adulto Joven , Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Oxígeno , Agua , Masculino
8.
J Occup Environ Hyg ; 20(9): 414-425, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37267511

RESUMEN

The impact of water consumption bolus volume and frequency on hydration biomarkers during work in the heat is unknown. In a randomized, crossover fashion, eight males consumed either 500 mL of water every 40 min or 237 mL of water every 20 min during 2 hr of continuous walking at 6.4 kph, 1.0% grade in a 34 °C/30% relative humidity environment, followed by 2 hr of rest. Hydration biomarkers and variables were assessed pre-work, post-work, and after the 2 hr recovery. There were no differences in body mass between trials at any time point (all p > 0.05). Percent change in plasma volume during work was not different when 237 mL of water was repeatedly consumed (-1.6 ± 8.2%) compared to 500 mL of water (-1.3 ± 3.0%, p = 0.92). Plasma osmolality was maintained over time (p = 0.55) with no difference between treatments (p = 0.21). When consuming 500 mL of water repeatedly, urine osmolality was lower at recovery (205 ± 108 mOsmo/L) compared to pre-work (589 ± 95 mOsmo/L, p < 0.01), different from repeatedly consuming 237 mL of water which maintained urine osmolality from pre-work (548 ± 144 mOsmo/L) through recovery (364 ± 261 mOsmo/L, p = 0.14). Free water clearance at recovery was greater with repeated consumption of 500 mL of water (1.2 ± 1.0 mL/min) compared to 237 mL of water (0.4 ± 0.8 mL/min, p = 0.02). Urine volume was not different between treatments post-work (p = 0.62), but greater after 2 hr of recovery when repeatedly consuming 500 mL of water compared to 237 mL (p = 0.01), leading to greater hydration efficiency upon recovery with repeated consumption of 237 mL of water (68 ± 12%) compared to 500 mL (63 ± 14%, p = 0.01). Thirst and total gastrointestinal symptom scores were not different between treatments at any time point (all p > 0.05). Body temperatures and heart rate were not different between treatments at any time point (all p > 0.05). Drinking larger, less frequent water boluses or drinking smaller, more frequent water boluses are both reasonable strategies to promote adequate hydration and limit changes in body mass in males completing heavy-intensity work in the heat.


Asunto(s)
Deshidratación , Ingestión de Líquidos , Humanos , Masculino , Deshidratación/prevención & control , Ingestión de Líquidos/fisiología , Ejercicio Físico/fisiología , National Institute for Occupational Safety and Health, U.S. , Concentración Osmolar , Estados Unidos , Agua , Equilibrio Hidroelectrolítico/fisiología
9.
Am J Physiol Regul Integr Comp Physiol ; 323(3): R340-R350, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816723

RESUMEN

We tested the hypothesis that, compared with normothermia, the increase in glomerular filtration rate (GFR) after an oral protein load (defined as the GFR reserve) is attenuated during moderate passive heat stress in young healthy adults. Sixteen participants (5 women; 26 ± 2 yr) completed two experimental visits, heat stress or a normothermic time-control, assigned in a block-randomized crossover design. During the heat stress trial, core temperature was increased by 0.6°C in the first hour before commencing a 2-min cold pressor test (CPT) to assess renal vasoconstrictor responses. One-hour post-CPT, subjects ingested a whey protein shake (1.2 g of protein/kg body wt), and measurements were taken pre-, 75, and 150 min postprotein. Segmental artery vascular resistance was calculated as the quotient of Doppler ultrasound-derived segmental artery blood velocity and mean arterial pressure and provided an estimate of renal vascular tone. GFR was estimated from creatinine clearance. The increase in segmental artery vascular resistance during the CPT was attenuated during heat stress (end CPT: 5.6 ± 0.9 vs. 4.7 ± 1.1 mmHg/cm/s, P = 0.024). However, the reduction in segmental artery vascular resistance in response to an oral protein load did not differ between heat stress (at 150 min: 1.9 ± 0.4 mmHg/cm/s) and normothermia (at 150 min: 1.8 ± 0.5 mmHg/cm/s; P = 0.979). The peak increase in creatinine clearance postprotein, independent of time, was attenuated during heat stress (+26 ± 19 vs. +16 ± 20 mL/min, P = 0.013, n = 13). GFR reserve is diminished by mild passive heat stress. Moreover, renal vasoconstrictor responses are attenuated by mild passive heat stress, but renal vasodilator responses are maintained.


Asunto(s)
Trastornos de Estrés por Calor , Creatinina , Estudios Cruzados , Femenino , Tasa de Filtración Glomerular , Respuesta al Choque Térmico/fisiología , Humanos , Vasoconstrictores , Adulto Joven
10.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R776-R786, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121146

RESUMEN

This study tested the hypotheses that 1) spleen volume increases during head-out-of-water immersion (HOWI) and returns to pre-HOWI values postdiuresis, and 2) the magnitude of apnea-induced spleen contraction increases when preapnea spleen volume is elevated. Spleen volume was measured before and after a set of five apneas in 12 healthy adults (28 ± 5 yr, 3 females) before, during (at 30 and 150 min), and 20 min after temperate temperature (36 ± 1°C) HOWI. At each time point, spleen length, width, and thickness were measured via ultrasound, and spleen volume was calculated using the Pilström equation. Compared with pre-HOWI (276 ± 88 mL), spleen volume was elevated at 30 (353 ± 94 mL, P < 0.01) and 150 (322 ± 87 mL, P < 0.01) min of HOWI but returned to pre-HOWI volume at post-HOWI (281 ± 90 mL, P = 0.58). Spleen volume decreased from pre- to postapnea bouts at each time point (P < 0.01). The magnitude of reduction in spleen volume from pre- to postapneas was elevated at 30 min of HOWI (-69 ± 24 mL) compared with pre-HOWI (-52 ± 20 mL, P = 0.04) but did not differ from pre-HOWI at 150 min of HOWI (-54 ± 16 mL, P = 0.99) and post-HOWI (-50 ± 18 mL, P = 0.87). Thus, spleen volume is increased throughout 180 min of HOWI, and whereas apnea-induced spleen contraction is augmented after 30 min of HOWI, the magnitude of spleen contraction is unaffected by HOWI thereafter.


Asunto(s)
Apnea , Bazo , Humanos , Adulto , Femenino , Agua , Presión Sanguínea/fisiología , Inmersión
11.
J Emerg Med ; 62(1): 64-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34544622

RESUMEN

BACKGROUND: Ultrasound inferior vena cava (IVC) diameter has been shown to decrease in response to hemorrhage. IVC diameter cut points to identify moderate and severe blood loss have not been established. OBJECTIVES: This study sought to find ultrasound IVC diameter cut points to identify moderate and severe hemorrhage and assess the performance of these cut points vs. vital sign abnormalities. METHODS: This is a secondary analysis of data from a study that described changes in vital signs and sonographic measurements of the IVC during a lower body negative pressure model of hemorrhage. Using receiver operator curve analyses, optimal cut points for identifying moderate and severe hemorrhage were identified. The ability of these cut points to identify hemorrhage in patients with no vital sign abnormalities was then assessed. RESULTS: In both long- and short-axis views, maximum and minimum IVC diameters (IVCmax and IVCmin) were significantly lower than baseline in severe blood loss. The optimal cut point for IVCmax in both axes was found to be ≤ 0.8 cm. This cut point is able to distinguish between no blood loss vs. moderate blood loss, and no blood loss vs. severe blood loss. The optimal cut point for IVCmin was variable between axes and blood loss severity. IVC diameter cut points obtained were able to identify hemorrhage in patients with no vital sign abnormalities. CONCLUSION: An ultrasound IVCmax of ≤ 0.8 cm may be useful in identifying moderate and severe hemorrhage before vital sign abnormalities are evident.


Asunto(s)
Abdomen , Vena Cava Inferior , Hemorragia/etiología , Humanos , Ultrasonografía , Vena Cava Inferior/diagnóstico por imagen , Signos Vitales
12.
Undersea Hyperb Med ; 49(4): 447-457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36446290

RESUMEN

We tested the hypothesis that thermal discomfort will be greater, mood will be worse, and physical symptoms of heat illness will be exacerbated with elevations in dry bulb temperature during exposure to >95% relative humidity disabled pressurized rescue module simulation. On three occasions, 15 healthy males (23 ± 3 years) sat in 32.1 ± 0.1°C, 33.1 ± 0.2°C or 35.0 ± 0.1°C, and 95 ± 2% relative humidity normobaric environments for eight hours. Thermal discomfort (visual analog scale), mood (profile of mood states), and physical symptoms of heat illness, ear-nose-throat, and muscle discomfort (environmental symptoms questionnaire) were assessed before and following each hour of exposure. Thermal discomfort was greater throughout the exposure in 35°C versus both 32°C and 33°C (p ≥ 0.03) and did not differ between the latter conditions (p ≥ 0.07). Mood worsened over time in all trials (p ≺ 0.01) and was worse in 35°C compared to 32°C and 33°C after five hours of exposure (p ≤ 0.05). Heat illness symptoms increased over time in all trials and was greater in 35°C versus 32°C and 33°C throughout the exposure (p ≤ 0.04). Ear-nose-throat and muscle discomfort symptoms increased over time in all trials (p < 0.01) and were higher in 35°C versus 32°C and 33°C after the sixth hour of exposure (p ≤ 0.02). In support of our hypothesis, mood was worse, physical symptoms of heat illness, and ear-nose-throat and muscle discomfort symptoms were exacerbated, and thermal discomfort was greater with elevations in dry bulb temperature during an eight-hour exposure to a >95% relative humidity disabled PRM simulation.


Asunto(s)
Estado de Salud , Masculino , Humanos , Dimensión del Dolor , Temperatura , Escala Visual Analógica
13.
J Occup Environ Hyg ; 19(10-11): 596-602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36083153

RESUMEN

The National Institute for Occupational Safety and Health recommendations for work in the heat suggest workers consume 237 mL of water every 15-20 min and allow for continuous work at heavy intensities in hot environments up to 34 °C and 30% relative humidity. The goal was to determine whether the National Institute for Occupational Safety and Health recommendations prevented core temperature from exceeding 38.0 °C and greater than 2% body mass loss during heavy-intensity work in the heat. Eight males consumed 237 mL of water every 20 min during 2 hr of continuous heavy-intensity walking (6.4 kph, 1% grade) in a 34 °C/30% relative humidity environment, in accordance with the National Institute for Occupational Safety and Health recommendations. Projected core temperature and percent body mass loss were calculated for 4 and 8 hr of continuous work. Core temperature rose from baseline (36.8 ± 0.3 °C) to completion of 2 hr of work (38.1 ± 0.6 °C, p < 0.01), with two participants reaching the 38.0 °C threshold. Projected core temperatures remained elevated from baseline (p < 0.01), did not change from 2 to 4 hr (38.1 ± 0.7 °C, p > 0.99) and 4 to 8 hr (38.1 ± 0.8 °C, p > 0.99), respectively, and one participant exceeded 38.0 °C at 4 to 8 hr. There was no change in body mass loss over time (p > 0.99). During 2 hr of continuous heavy-intensity work in the heat, 75% of participants did not reach 38 °C core temperature and 88% did not reach 2% body mass loss when working to National Institute for Occupational Safety and Health recommendations.


Asunto(s)
Trastornos de Estrés por Calor , Hipertermia Inducida , Masculino , Estados Unidos , Humanos , Calor , Trastornos de Estrés por Calor/prevención & control , National Institute for Occupational Safety and Health, U.S. , Agua , Temperatura Corporal , Regulación de la Temperatura Corporal
14.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R197-R207, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34133244

RESUMEN

Tonic carotid body (CB) activity is reduced during exposure to cold and hyperoxia. We tested the hypotheses that cold water diving lowers CB chemosensitivity and augments CO2 retention more than thermoneutral diving. Thirteen subjects [age: 26 ± 4 yr; body mass index (BMI): 26 ± 2 kg/m2) completed two 4-h head-out water immersion protocols in a hyperbaric chamber (1.6 ATA) in cold (15°C) and thermoneutral (25°C) water. CB chemosensitivity was assessed with brief hypercapnic ventilatory response ([Formula: see text]) and hypoxic ventilatory response ([Formula: see text]) tests before dive, 80 and 160 min into the dive (D80 and D160, respectively), and immediately after and 60 min after dive. Data are reported as an absolute mean (SD) change from predive. End-tidal CO2 pressure increased during both the thermoneutral water dive [D160: +2 (3) mmHg; P = 0.02] and the cold water dive [D160: +1 (2) mmHg; P = 0.03]. Ventilation increased during the cold water dive [D80: 4.13 (4.38) and D160: 7.75 (5.23) L·min-1; both P < 0.01] and was greater than the thermoneutral water dive at both time points (both P < 0.01). [Formula: see text] was unchanged during the dive (P = 0.24) and was not different between conditions (P = 0.23). [Formula: see text] decreased during the thermoneutral water dive [D80: -3.45 (3.61) and D160: -2.76 (4.04) L·min·mmHg-1; P < 0.01 and P = 0.03, respectively] but not the cold water dive. However, [Formula: see text] was not different between conditions (P = 0.17). In conclusion, CB chemosensitivity was not attenuated during the cold stress diving condition and does not appear to contribute to changes in ventilation or CO2 retention.


Asunto(s)
Dióxido de Carbono/sangre , Cuerpo Carotídeo/fisiopatología , Frío , Reflejo de Inmersión , Buceo , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Pulmón/fisiopatología , Ventilación Pulmonar , Adulto , Cuerpo Carotídeo/metabolismo , Hemodinámica , Humanos , Hipercapnia/sangre , Hipoxia/sangre , Inmersión , Masculino , Oxígeno/sangre , Adulto Joven
15.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R641-R652, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533320

RESUMEN

In healthy humans, fructose-sweetened water consumption increases blood pressure variability (BPV) and decreases spontaneous cardiovagal baroreflex sensitivity (cBRS) and heart rate variability (HRV). However, whether consuming commercially available soft drinks containing high levels of fructose elicits similar responses is unknown. We hypothesized that high-fructose corn syrup (HFCS)-sweetened soft drink consumption increases BPV and decreases cBRS and HRV to a greater extent compared with artificially sweetened (diet) and sucrose-sweetened (sucrose) soft drinks and water. Twelve subjects completed four randomized, double-blinded trials in which they drank 500 mL of water or commercially available soft drinks matched for taste and caffeine content. We continuously measured beat-to-beat blood pressure (photoplethysmography) and R-R interval (ECG) before and 30 min after drink consumption during supine rest for 5 min during spontaneous and paced breathing. BPV was evaluated using standard deviation (SD), average real variability (ARV), and successive variation (SV) methods for systolic and diastolic blood pressure. cBRS was assessed using the sequence method. HRV was evaluated using the root mean square of successive differences (RMSSD) in R-R interval. There were no differences between conditions in the magnitude of change from baseline in SD, ARV, and SV (P ≥ 0.07). There were greater reductions in cBRS during spontaneous breathing in the HFCS (-3 ± 5 ms/mmHg) and sucrose (-3 ± 5 ms/mmHg) trials compared with the water trial (+1 ± 5 ms/mmHg, P < 0.03). During paced breathing, HFCS evoked greater reductions in RMSSD compared with water (-26 ± 34 vs. +2 ± 26 ms, P < 0.01). These findings suggest that sugar-sweetened soft drink consumption alters cBRS and HRV but not BPV.


Asunto(s)
Bebidas Endulzadas Artificialmente/efectos adversos , Barorreflejo , Presión Sanguínea , Frecuencia Cardíaca , Corazón/inervación , Jarabe de Maíz Alto en Fructosa/efectos adversos , Sacarosa/efectos adversos , Bebidas Azucaradas/efectos adversos , Nervio Vago/fisiología , Adulto , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Respiración , Factores de Tiempo , Adulto Joven
16.
Prehosp Emerg Care ; 25(3): 341-346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32628063

RESUMEN

INTRODUCTION: Inferior vena cava (IVC) diameter decreases under conditions of hypovolemia. Point-of-care ultrasound (POCUS) may be useful to emergently assess IVC diameter. This study tested the hypothesis that ultrasound measurements of IVC diameter decreases during severe simulated blood loss. METHODS: Blood loss was simulated in 14 healthy men (22 ± 2 years) using lower body negative pressure (LBNP). Pressure within the LBNP chamber was reduced 10 mmHg of LBNP every four minutes until participants experienced pre-syncopal symptoms or until 80 mmHg of LBNP was completed. IVC diameter was imaged with POCUS using B-mode in the long and short axis views between minutes two and four of each stage. RESULTS: Maximum IVC diameter in the long axis view was lower than baseline (1.5 ± 0.4 cm) starting at -20 mmHg of LBNP (1.0 ± 0.3 cm; p < 0.01) and throughout LBNP (p < 0.01). The minimum IVC diameter in the long axis view was lower than baseline (0.9 ± 0.3 cm) at -20 mmHg of LBNP (0.5 ± 0.3 cm; p < 0.01) and throughout LBNP (p < 0.01). Maximum IVC diameter in the short axis view was lower than baseline (0.9 ± 0.2 cm) at 40 mmHg of LBNP (0.6 ± 0.2; p = 0.01) and the final LBNP stage (0.6 ± 0.2 cm; p < 0.01). IVC minimum diameter in the short axis view was lower than baseline (0.5 ± 0.2 cm) at the final LBNP stage (0.3 ± 0.2 cm; p = 0.01). CONCLUSION: These data demonstrate that IVC diameter decreases prior to changes in traditional vital signs during simulated blood loss. Further study is needed to determine the view and diameter threshold that most accurate for identifying hemorrhage requiring emergent intervention.


Asunto(s)
Servicios Médicos de Urgencia , Hipovolemia , Hemorragia/diagnóstico por imagen , Humanos , Presión Negativa de la Región Corporal Inferior , Masculino , Vena Cava Inferior/diagnóstico por imagen
17.
Brain Inj ; 35(2): 226-232, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33459038

RESUMEN

Objective: Concussion is associated with dysautonomia, altered blood pressure (BP) control, and may cause Orthostatic Hypotension (OH). We measured prevalence of OH using the 1-minute supine-to-standing OH Test in adolescents with concussion and controls.Participants: Adolescents within 10 days of injury (Concussion Group, n = 297, 15.0 ± 1.7 years, 59% male) were compared with controls (Control Group, n = 214, 15.0 ± 1.5 years, 58% male).Methods: BP, heart rate (HR), and complaints of lightheadedness/dizziness were measured after 2-minute supine and 1-minute standing. Control Group was assessed once. Concussion Group was assessed twice; (1) initial visit (mean 6.0 ± 3 days-since-injury) and (2) after clinical recovery (mean 46.3 ± 42 days-since-injury).Results: Initial visit; Concussion Group reported feeling lightheaded/dizzy on postural change more often than the Control Group (37% vs 4%, p < .001) but did not differ in meeting standard OH criteria (3% vs 5%, p = .32). Experiencing symptoms did not correlate with meeting OH criteria, but correlated with abnormal vestibulo-ocular reflex. After clinical recovery; Concussion Group did not differ in experiencing lightheaded/dizziness on postural change than controls (4%, p = .65).Conclusion: Adolescents commonly experience orthostatic intolerance after concussion without meeting the standard criteria for OH.


Asunto(s)
Conmoción Encefálica , Hipotensión Ortostática , Adolescente , Presión Sanguínea , Conmoción Encefálica/complicaciones , Mareo/etiología , Femenino , Frecuencia Cardíaca , Humanos , Hipotensión Ortostática/etiología , Masculino
18.
Undersea Hyperb Med ; 48(2): 107-117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975401

RESUMEN

Introduction: Pre-dive altitude exposure may increase respiratory fatigue and subsequently augment exercise ventilation at depth. This study examined pre-dive altitude exposure and the efficacy of resistance respiratory muscle training (RMT) on respiratory fatigue while diving at altitude. Methods: Ten men (26±5 years; VO2peak: 39.8±3.3 mL• kg-1•min-1) performed three dives; one control (ground level) and two simulated altitude dives (3,658 m) to 17 msw, relative to ground level, before and after four weeks of resistance RMT. Subjects performed pulmonary function testing (e.g., inspiratory [PI] and expiratory [PE] pressure testing) pre- and post-RMT and during dive visits. During each dive, subjects exercised for 18 minutes at 55% VO2peak, and ventilation (VE), breathing frequency (ƒb,), tidal volume (VT) and rating of perceived exertion (RPE) were measured. Results: Pre-dive altitude exposure reduced PI before diving (p=0.03), but had no effect on exercise VE, ƒb, or VT at depth. At the end of the dive in the pre-RMT condition, RPE was lower (p=0.01) compared to control. RMT increased PI and PE (p<0.01). PE was reduced from baseline after diving at altitude (p<0.03) and this was abated after RMT. RMT did not improve VE or VT at depth, but decreased ƒb (p=0.01) and RPE (p=0.048) during the final minutes of exercise. Conclusion: Acute altitude exposure pre- and post-dive induces decrements in PI and PE before and after diving, but does not seem to influence ventilation at depth. RMT reduced ƒb and RPE during exercise at depth, and may be useful to reduce work of breathing and respiratory fatigue during dives at altitude.


Asunto(s)
Altitud , Ejercicios Respiratorios/métodos , Buceo/fisiología , Ejercicio Físico/fisiología , Fatiga Muscular/fisiología , Trabajo Respiratorio/fisiología , Adulto , Análisis de Varianza , Exposición a Riesgos Ambientales , Espiración/fisiología , Frecuencia Cardíaca , Humanos , Inhalación/fisiología , Masculino , Oxígeno/sangre , Consumo de Oxígeno/fisiología , Esfuerzo Físico/fisiología , Entrenamiento de Fuerza/métodos , Pruebas de Función Respiratoria , Volumen de Ventilación Pulmonar/fisiología , Factores de Tiempo
19.
J Physiol ; 598(13): 2775-2790, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32347543

RESUMEN

KEY POINTS: Skin wetness occurring secondary to the build-up of sweat on the skin provokes thermal discomfort, the precursor to engaging in cool-seeking behaviour. Associative evidence indicates that skin wetness stimulates cool-seeking behaviour to a greater extent than increases in core and mean skin temperatures. The independent contribution of skin wetness to cool-seeking behaviour during heat stress has never been established. We demonstrate that skin wetness augments cool-seeking behaviour during passive heat stress independently of differential increases in skin temperature and core temperature. We also identify that perceptions of skin wetness were not elevated despite increases in actual skin wetness. These data support the proposition that afferent signalling from skin wetness enhances the desire to engage in cool-seeking behaviour during passive heat stress. ABSTRACT: This study tested the hypothesis that elevations in skin wetness augments cool-seeking behaviour during passive heat stress. Twelve subjects (6 females, age: 24 ± 2 y) donned a water-perfused suit circulating 34 °C water and completed two trials resting supine in a 28.5 ± 0.4 °C environment. The trials involved a 20 min baseline period (26 ± 3% relative humidity (RH)), 60 min while ambient humidity was maintained at 26±3% RH (LOW) or increased to 67 ± 5% RH (HIGH), followed by 60 min passive heat stress (HS) where the water temperature in the suit was incrementally increased to 50 °C. Subjects were able to seek cooling when their neck was thermally uncomfortable by pressing a button. Each button press initiated 30 s of -20 °C fluid perfusing through a custom-made device secured against the skin on the dorsal neck. Mean skin (Tskin ) and core (Tcore ) temperatures, mean skin wetness (Wskin ) and neck device temperature (Tdevice ) were measured continuously. Cool-seeking behaviour was determined from total time receiving cooling (TTcool ) and cumulative button presses. Tskin and Tcore increased during HS (P < 0.01) but were not different between conditions (P ≥ 0.11). Wskin was elevated in HIGH vs. LOW during HS (60 min: by + 0.06 ± 0.07 a.u., P ≤ 0.04). Tdevice was lower in HIGH vs. LOW at 40-50 min of HS (P ≤ 0.01). TTcool was greater for HIGH (330 ± 172 s) vs. LOW (225 ± 167 s, P < 0.01), while the number of cumulative button presses was greater from 40-60 min in HS for HIGH vs. LOW (P ≤ 0.04). Increased skin wetness amplifies the engagement in cool-seeking behaviour during passive heat stress.


Asunto(s)
Regulación de la Temperatura Corporal , Trastornos de Estrés por Calor , Adulto , Femenino , Respuesta al Choque Térmico , Calor , Humanos , Temperatura Cutánea , Sudoración , Adulto Joven
20.
Am J Physiol Renal Physiol ; 318(4): F1053-F1065, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32174139

RESUMEN

We first tested the hypothesis that consuming a high-fructose corn syrup (HFCS)-sweetened soft drink augments kidney vasoconstriction to sympathetic stimulation compared with water (study 1). In a second study, we examined the mechanisms underlying these observations (study 2). In study 1, 13 healthy adults completed a cold pressor test, a sympathoexcitatory maneuver, before (preconsumption) and 30 min after drinking 500 mL of decarbonated HFCS-sweetened soft drink or water (postconsumption). In study 2, venous blood samples were obtained in 12 healthy adults before and 30 min after consumption of 500 mL water or soft drinks matched for caffeine content and taste, which were either artificially sweetened (Diet trial), sucrose-sweetened (Sucrose trial), or sweetened with HFCS (HFCS trial). In both study 1 and study 2, vascular resistance was calculated as mean arterial pressure divided by blood velocity, which was measured via Doppler ultrasound in renal and segmental arteries. In study 1, HFCS consumption increased vascular resistance in the segmental artery at rest (by 0.5 ± 0.6 mmHg·cm-1·s-1, P = 0.01) and during the cold pressor test (average change: 0.5 ± 1.0 mmHg·cm-1·s-1, main effect: P = 0.05). In study 2, segmental artery vascular resistance increased in the HFCS trial (by 0.8 ± 0.7 mmHg·cm-1·s-1, P = 0.02) but not in the other trials. Increases in serum uric acid were greater in the HFCS trial (0.3 ± 0.4 mg/dL, P ≤ 0.04) compared with the Water and Diet trials, and serum copeptin increased in the HFCS trial (by 0.8 ± 1.0 pmol/L, P = 0.06). These findings indicate that HFCS acutely increases vascular resistance in the kidneys, independent of caffeine content and beverage osmolality, which likely occurs via simultaneous elevations in circulating uric acid and vasopressin.


Asunto(s)
Bebidas Endulzadas Artificialmente/efectos adversos , Jarabe de Maíz Alto en Fructosa/efectos adversos , Riñón/irrigación sanguínea , Arteria Renal/inervación , Circulación Renal/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Resistencia Vascular/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Velocidad del Flujo Sanguíneo , Cafeína/administración & dosificación , Femenino , Voluntarios Sanos , Jarabe de Maíz Alto en Fructosa/administración & dosificación , Humanos , Masculino , Distribución Aleatoria , Arteria Renal/diagnóstico por imagen , Sistema Nervioso Simpático/fisiopatología , Factores de Tiempo , Regulación hacia Arriba , Ácido Úrico/sangre , Vasopresinas/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA