Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Curr Opin Hematol ; 30(4): 117-123, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37254854

RESUMEN

PURPOSE OF REVIEW: Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS: GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY: As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.


Asunto(s)
Deficiencia GATA2 , Humanos , Diferenciación Celular/genética , Factor de Transcripción GATA2/genética , Inmunidad Innata , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interferones/metabolismo , Animales
2.
Mol Cell ; 59(1): 62-74, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26073540

RESUMEN

Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.5) required for hematopoietic stem cell genesis in mice is mutated in a human immunodeficiency syndrome. Because +9.5 is the only cis-element known to mediate stem cell genesis, we devised a strategy to identify functionally comparable enhancers ("+9.5-like") genome-wide. Gene editing revealed +9.5-like activity to mediate GATA-2 occupancy, chromatin opening, and transcriptional activation. A +9.5-like element resided in Samd14, which encodes a protein of unknown function. Samd14 increased hematopoietic progenitor levels/activity and promoted signaling by a pathway vital for hematopoietic stem/progenitor cell regulation (stem cell factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes. Thus, the hematopoietic stem/progenitor cell cistrome revealed a mediator of a signaling pathway that has broad importance for stem/progenitor cell biology.


Asunto(s)
Factor de Transcripción GATA2/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas/genética , Proteínas Proto-Oncogénicas c-kit/genética , Activación Transcripcional/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular/genética , Línea Celular , Ratones , Datos de Secuencia Molecular , Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Transcripción Genética/genética
3.
Nucleic Acids Res ; 49(22): e127, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34581807

RESUMEN

Single-cell transcriptome sequencing (scRNA-seq) enabled investigations of cellular heterogeneity at exceedingly higher resolutions. Identification of novel cell types or transient developmental stages across multiple experimental conditions is one of its key applications. Linear and non-linear dimensionality reduction for data integration became a foundational tool in inference from scRNA-seq data. We present multilayer graph clustering (MLG) as an integrative approach for combining multiple dimensionality reduction of multi-condition scRNA-seq data. MLG generates a multilayer shared nearest neighbor cell graph with higher signal-to-noise ratio and outperforms current best practices in terms of clustering accuracy across large-scale benchmarking experiments. Application of MLG to a wide variety of datasets from multiple conditions highlights how MLG boosts signal-to-noise ratio for fine-grained sub-population identification. MLG is widely applicable to settings with single cell data integration via dimension reduction.


Asunto(s)
RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Análisis por Conglomerados , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones
4.
Development ; 145(1)2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321181

RESUMEN

Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.


Asunto(s)
Diferenciación Celular/fisiología , Eritrocitos/metabolismo , Eritropoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Regeneración/fisiología , Animales , Transporte Biológico Activo/fisiología , Eritrocitos/citología , Células Madre Hematopoyéticas/citología , Humanos , Oxígeno/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(43): E10109-E10118, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301799

RESUMEN

By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.


Asunto(s)
Factor de Transcripción GATA2/genética , Leucemia Mieloide Aguda/genética , Mutación/genética , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación de la Expresión Génica/genética , Haploinsuficiencia/genética , Hematopoyesis/genética , Humanos , Ratones , Síndromes Mielodisplásicos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Células Madre/metabolismo , Dedos de Zinc/genética
6.
Blood ; 130(Suppl_1): 7, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31940664

RESUMEN

DISCLOSURES: No relevant conflicts of interest to declare.

7.
Blood ; 129(3): 358-370, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-27815262

RESUMEN

Somatic mutations in TP53 and NRAS are associated with transformation of human chronic myeloid diseases to acute myeloid leukemia (AML). Here, we report that concurrent RAS pathway and TP53 mutations are identified in a subset of AML patients and confer an inferior overall survival. To further investigate the genetic interaction between p53 loss and endogenous NrasG12D/+ in AML, we generated conditional NrasG12D/+p53-/- mice. Consistent with the clinical data, recipient mice transplanted with NrasG12D/+p53-/- bone marrow cells rapidly develop a highly penetrant AML. We find that p53-/- cooperates with NrasG12D/+ to promote increased quiescence in megakaryocyte-erythroid progenitors (MEPs). NrasG12D/+p53-/- MEPs are transformed to self-renewing AML-initiating cells and are capable of inducing AML in serially transplanted recipients. RNA sequencing analysis revealed that transformed MEPs gain a partial hematopoietic stem cell signature and largely retain an MEP signature. Their distinct transcriptomes suggests a potential regulation by p53 loss. In addition, we show that during AML development, transformed MEPs acquire overexpression of oncogenic Nras, leading to hyperactivation of ERK1/2 signaling. Our results demonstrate that p53-/- synergizes with enhanced oncogenic Nras signaling to transform MEPs and drive AML development. This model may serve as a platform to test candidate therapeutics in this aggressive subset of AML.


Asunto(s)
Transformación Celular Neoplásica/genética , GTP Fosfohidrolasas/genética , Leucemia Mieloide Aguda/patología , Células Progenitoras de Megacariocitos y Eritrocitos/patología , Proteínas de la Membrana/genética , Proteína p53 Supresora de Tumor/genética , Animales , Trasplante de Médula Ósea , Humanos , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia
8.
Mol Cell ; 36(6): 984-95, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-20064464

RESUMEN

GATA factors establish transcriptional networks that control fundamental developmental processes. Whereas the regulator of hematopoiesis GATA-1 is subject to multiple posttranslational modifications, how these modifications influence GATA-1 function at endogenous loci is unknown. We demonstrate that sumoylation of GATA-1 K137 promotes transcriptional activation only at target genes requiring the coregulator Friend of GATA-1 (FOG-1). A mutation of GATA-1 V205G that disrupts FOG-1 binding and K137 mutations yielded similar phenotypes, although sumoylation was FOG-1 independent, and FOG-1 binding did not require sumoylation. Both mutations dysregulated GATA-1 chromatin occupancy at select sites, FOG-1-dependent gene expression, and were rescued by tethering SUMO-1. While FOG-1- and SUMO-1-dependent genes migrated away from the nuclear periphery upon erythroid maturation, FOG-1- and SUMO-1-independent genes persisted at the periphery. These results illustrate a mechanism that controls trans-acting factor function in a locus-specific manner, and differentially regulated members of the target gene ensemble reside in distinct subnuclear compartments.


Asunto(s)
Factor de Transcripción GATA1/metabolismo , Hematopoyesis/fisiología , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Factor de Transcripción GATA1/genética , Regulación de la Expresión Génica , Ratones , Mutación , Proteínas Nucleares/genética , Unión Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Factores de Transcripción/genética , Transcripción Genética
9.
Proc Natl Acad Sci U S A ; 111(12): E1091-100, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24616499

RESUMEN

The unremitting demand to replenish differentiated cells in tissues requires efficient mechanisms to generate and regulate stem and progenitor cells. Although master regulatory transcription factors, including GATA binding protein-2 (GATA-2), have crucial roles in these mechanisms, how such factors are controlled in developmentally dynamic systems is poorly understood. Previously, we described five dispersed Gata2 locus sequences, termed the -77, -3.9, -2.8, -1.8, and +9.5 GATA switch sites, which contain evolutionarily conserved GATA motifs occupied by GATA-2 and GATA-1 in hematopoietic precursors and erythroid cells, respectively. Despite common attributes of transcriptional enhancers, targeted deletions of the -2.8, -1.8, and +9.5 sites revealed distinct and unpredictable contributions to Gata2 expression and hematopoiesis. Herein, we describe the targeted deletion of the -3.9 site and mechanistically compare the -3.9 site with other GATA switch sites. The -3.9(-/-) mice were viable and exhibited normal Gata2 expression and steady-state hematopoiesis in the embryo and adult. We established a Gata2 repression/reactivation assay, which revealed unique +9.5 site activity to mediate GATA factor-dependent chromatin structural transitions. Loss-of-function analyses provided evidence for a mechanism in which a mediator of long-range transcriptional control [LIM domain binding 1 (LDB1)] and a chromatin remodeler [Brahma related gene 1 (BRG1)] synergize through the +9.5 site, conferring expression of GATA-2, which is known to promote the genesis and survival of hematopoietic stem cells.


Asunto(s)
Factor de Transcripción GATA2/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Células Madre/citología , Animales , Secuencia de Bases , Diferenciación Celular/genética , Células Cultivadas , Elementos de Facilitación Genéticos , Hematopoyesis , Humanos , Intrones , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico , Células Madre/metabolismo
10.
Blood ; 121(19): 3830-7, S1-7, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23502222

RESUMEN

Previous reports of GATA2 mutations have focused on the coding region of the gene or full gene deletions. We recently identified 2 patients with novel insertion/deletion mutations predicted to result in mRNA nonsense-mediated decay, suggesting haploinsufficiency as the mechanism of GATA2 deficient disease. We therefore screened patients without identified exonic lesions for mutations within conserved noncoding and intronic regions. We discovered 1 patient with an intronic deletion mutation, 4 patients with point mutations within a conserved intronic element, and 3 patients with reduced or absent transcription from 1 allele. All mutations affected GATA2 transcription. Full-length cDNA analysis provided evidence for decreased expression of the mutant alleles. The intronic deletion and point mutations considerably reduced the enhancer activity of the intron 5 enhancer. Analysis of 512 immune system genes revealed similar expression profiles in all clinically affected patients and reduced GATA2 transcript levels. These mutations strongly support the haploinsufficient nature of GATA2 deficiency and identify transcriptional mechanisms and targets that lead to MonoMAC syndrome.


Asunto(s)
Factor de Transcripción GATA2/genética , Haploinsuficiencia/genética , Leucopenia/genética , Mutación/fisiología , Infección por Mycobacterium avium-intracellulare/genética , Adolescente , Adulto , Anciano , Secuencia de Bases , Niño , Preescolar , Secuencia Conservada/genética , Femenino , Humanos , Lactante , Intrones/genética , Células K562 , Leucopenia/sangre , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Monocitos/patología , Infección por Mycobacterium avium-intracellulare/sangre , Degradación de ARNm Mediada por Codón sin Sentido/genética , Síndrome , Adulto Joven
11.
Curr Opin Hematol ; 21(3): 155-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24722192

RESUMEN

PURPOSE OF REVIEW: Erythropoiesis, in which hematopoietic stem cells (HSCs) generate lineage-committed progenitors that mature into erythrocytes, is regulated by numerous chromatin modifying and remodeling proteins. We will focus on how epigenetic and genetic mechanisms mesh to establish the erythroid transcriptome and how studying erythropoiesis can yield genomic principles. RECENT FINDINGS: Trans-acting factor binding to small DNA motifs (cis-elements) underlies regulatory complex assembly at specific chromatin sites, and therefore unique transcriptomes. As cis-elements are often very small, thousands or millions of copies of a given element reside in a genome. Chromatin restricts factor access in a context-dependent manner, and cis-element-binding factors recruit chromatin regulators that mediate functional outputs. Technologies to map chromatin attributes of loci in vivo, to edit genomes and to sequence whole genomes have been transformative in discovering critical cis-elements linked to human disease. SUMMARY: Cis-elements mediate chromatin-targeting specificity, and chromatin regulators dictate cis-element accessibility/function, illustrating an amalgamation of genetic and epigenetic mechanisms. Cis-elements often function ectopically when studied outside of their endogenous loci, and complex strategies to identify nonredundant cis-elements require further development. Facile genome-editing technologies provide a new approach to address this problem. Extending genetic analyses beyond exons and promoters will yield a rich pipeline of cis-element alterations with importance for red cell biology and disease.


Asunto(s)
Epigenómica , Eritrocitos/fisiología , Factores de Transcripción/fisiología , Perfilación de la Expresión Génica , Hematopoyesis/fisiología , Humanos
12.
Nucleic Acids Res ; 40(13): 5819-31, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22492510

RESUMEN

Numerous examples exist of how disrupting the actions of physiological regulators of blood cell development yields hematologic malignancies. The master regulator of hematopoietic stem/progenitor cells GATA-2 was cloned almost 20 years ago, and elegant genetic analyses demonstrated its essential function to promote hematopoiesis. While certain GATA-2 target genes are implicated in leukemogenesis, only recently have definitive insights emerged linking GATA-2 to human hematologic pathophysiologies. These pathophysiologies include myelodysplastic syndrome, acute myeloid leukemia and an immunodeficiency syndrome with complex phenotypes including leukemia. As GATA-2 has a pivotal role in the etiology of human cancer, it is instructive to consider mechanisms underlying normal GATA factor function/regulation and how dissecting such mechanisms may reveal unique opportunities for thwarting GATA-2-dependent processes in a therapeutic context. This article highlights GATA factor mechanistic principles, with a heavy emphasis on GATA-1 and GATA-2 functions in the hematopoietic system, and new links between GATA-2 dysregulation and human pathophysiologies.


Asunto(s)
Factores de Transcripción GATA/metabolismo , Neoplasias Hematológicas/genética , Factor de Transcripción GATA2/metabolismo , Neoplasias Hematológicas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
13.
Blood ; 117(18): 4769-72, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21398579

RESUMEN

Master transcriptional regulators of development often function through dispersed cis elements at endogenous target genes. While cis-elements are routinely studied in transfection and transgenic reporter assays, it is challenging to ascertain how they function in vivo. To address this problem in the context of the locus encoding the critical hematopoietic transcription factor Gata2, we engineered mice lacking a cluster of GATA motifs 2.8 kb upstream of the Gata2 transcriptional start site. We demonstrate that the -2.8 kb site confers maximal Gata2 expression in hematopoietic stem cells and specific hematopoietic progenitors. By contrast to our previous demonstration that a palindromic GATA motif at the neighboring -1.8 kb site maintains Gata2 repression in terminally differentiating erythroid cells, the -2.8 kb site was not required to initiate or maintain repression. These analyses reveal qualitatively distinct functions of 2 GATA motif-containing regions in vivo.


Asunto(s)
Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Hematopoyesis/genética , Hematopoyesis/fisiología , Secuencias de Aminoácidos , Animales , Eritropoyesis/genética , Eritropoyesis/fisiología , Factor de Transcripción GATA2/química , Expresión Génica , Técnicas de Sustitución del Gen , Genes de Cambio , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sitio de Iniciación de la Transcripción
14.
iScience ; 26(4): 106297, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950124

RESUMEN

Innate immune signaling protects against pathogens, controls hematopoietic development, and functions in oncogenesis, yet the relationship between these mechanisms is undefined. Downregulating the GATA2 transcription factor in fetal hematopoietic progenitor cells upregulates genes encoding innate immune regulators, increases Interferon-γ (IFNγ) signaling, and disrupts differentiation. We demonstrate that deletion of an enhancer that confers GATA2 expression in fetal progenitors elevated Toll-like receptor (TLR) TLR1/2 and TLR2/6 expression and signaling. Rescue by expressing GATA2 downregulated elevated TLR signaling. IFNγ amplified TLR1/2 and TLR2/6 signaling in GATA2-deficient progenitors, synergistically activating cytokine/chemokine genes and elevating cytokine/chemokine production in myeloid cell progeny. Genomic analysis of how innate immune signaling remodels the GATA2-deficient progenitor transcriptome revealed hypersensitive responses at innate immune genes harboring motifs for signal-dependent transcription factors and factors not linked to these mechanisms. As GATA2 establishes a transcriptome that constrains innate immune signaling, insufficient GATA2 renders fetal progenitor cells hypersensitive to innate immune signaling.

15.
Blood Adv ; 7(4): 586-601, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36161469

RESUMEN

The RNA-regulatory exosome complex (EC) posttranscriptionally and cotranscriptionally processes and degrades RNAs in a context-dependent manner. Although the EC functions in diverse cell types, its contributions to stem and progenitor cell development are not well understood. Previously, we demonstrated that the transcriptional regulator of erythrocyte development, GATA1, represses EC subunit genes, and the EC maintains erythroid progenitors in vitro. To determine if this mechanism operates in vivo, we used the hematopoietic-specific Vav1-Cre and "conditional by inversion" mouse system to ablate Exosc3, encoding an EC structural subunit. Although Exosc3C/C Cre+ embryos developed normally until embryonic day 14.5, Exosc3 ablation was embryonic lethal and severely reduced erythromyeloid progenitor activity. RNA sequencing analysis of Exosc3-ablated burst-forming unit-erythroid revealed elevated transcripts encoding multiple proapoptotic factors, and the mutant erythroid progenitors exhibited increased apoptosis. We propose that the EC controls an ensemble of apoptosis-regulatory RNAs, thereby promoting erythroid progenitor survival and developmental erythropoiesis in vivo.


Asunto(s)
Células Precursoras Eritroides , Exosomas , Ratones , Animales , Complejo Multienzimático de Ribonucleasas del Exosoma , Apoptosis , ARN
16.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36809258

RESUMEN

Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.


Asunto(s)
Deficiencia GATA2 , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Deficiencia GATA2/genética , Interleucina-6/genética , Hematopoyesis/genética , Expresión Génica , Dedos de Zinc/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo
17.
J Biol Chem ; 286(21): 18834-44, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21398517

RESUMEN

A poorly understood problem in genetics is how the three-dimensional organization of the nucleus contributes to establishment and maintenance of transcriptional networks. Genetic loci can reside in chromosome "territories" and undergo dynamic changes in subnuclear positioning. Such changes appear to be important for regulating transcription, although many questions remain regarding how loci reversibly transit in and out of their territories and the functional significance of subnuclear transitions. We addressed this issue using GATA-1, a master regulator of hematopoiesis implicated in human leukemogenesis, which often functions with the coregulator Friend of GATA-1 (FOG-1). In a genetic complementation assay in GATA-1-null cells, GATA-1 expels FOG-1-dependent target genes from the nuclear periphery during erythroid maturation, but the underlying mechanisms are unknown. We demonstrate that GATA-1 induces extrusion of the ß-globin locus away from its chromosome territory at the nuclear periphery, and extrusion precedes the maturation-associated transcriptional surge and morphological transition. FOG-1 and its interactor Mi-2ß, a chromatin remodeling factor commonly linked to repression, were required for locus extrusion. Erythroid Krüppel-like factor, a pivotal regulator of erythropoiesis that often co-occupies chromatin with GATA-1, also promoted locus extrusion. Disruption of transcriptional maintenance did not restore the locus subnuclear position that preceded activation. These results lead to a model for how a master developmental regulator relocalizes a locus into a new subnuclear neighborhood that is permissive for high level transcription as an early step in establishing a cell type-specific genetic network. Alterations in the regulatory milieu can abrogate maintenance without reversion of locus residency back to its original neighborhood.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Factor de Transcripción GATA1/metabolismo , Sitios Genéticos/fisiología , Modelos Biológicos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Globinas beta/biosíntesis , Animales , Células CHO , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Cricetinae , Cricetulus , Factor de Transcripción GATA1/genética , Hematopoyesis/fisiología , Humanos , Proteínas Nucleares/genética , Factores de Transcripción/genética , Transcripción Genética/fisiología , Globinas beta/genética
18.
Blood Adv ; 6(5): 1464-1473, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35008108

RESUMEN

Cell type-specific transcription factors control stem and progenitor cell transitions by establishing networks containing hundreds of genes and proteins. Network complexity renders it challenging to discover essential versus modulatory or redundant components. This scenario is exemplified by GATA2 regulation of hematopoiesis during embryogenesis. Loss of a far upstream Gata2 enhancer (-77) disrupts the GATA2-dependent transcriptome governing hematopoietic progenitor cell differentiation. The aberrant transcriptome includes the transcription factor interferon regulatory factor 8 (IRF8) and a host of innate immune regulators. Mutant progenitors lose the capacity to balance production of diverse hematopoietic progeny. To elucidate mechanisms, we asked if IRF8 is essential, contributory, or not required. Reducing Irf8, in the context of the -77 mutant allele, reversed granulocytic deficiencies and the excessive accumulation of dendritic cell committed progenitors. Despite many dysregulated components that control vital transcriptional, signaling, and immune processes, the aberrant elevation of a single transcription factor deconstructed the differentiation program.


Asunto(s)
Deficiencia GATA2 , Diferenciación Celular/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Hematopoyesis/genética , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo
19.
Blood Adv ; 6(4): 1095-1099, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34516632

RESUMEN

Mammalian GATA2 gene encodes a dual zinc finger transcription factor, which is essential for hematopoietic stem cell (HSC) generation in the aorta, gonad, mesonephros (AGM) region, HSC self-renewal, and specification of progenitor cell fates. Previously, we demonstrated that Gata2 expression in AGM is controlled by its intronic +9.5 enhancer. Gata2 +9.5 deficiency removes the E-box motif and the GATA site and depletes fetal liver HSCs. However, whether this enhancer has an essential role in regulating adult hematopoiesis has not been established. Here, we evaluate Gata2 +9.5 enhancer function in adult hematopoiesis. +9.5+/- bone marrow cells displayed reduced T cell reconstitution in a competitive transplant assay. Donor-derived analysis demonstrated a previously unrecognized function of the +9.5 enhancer in T cell development at the lymphoid-primed multipotent progenitor stage. Moreover, +9.5+/- adult HSCs displayed increased apoptosis and reduced long-term self-renewal capability in comparison with wild-type (WT) HSCs. These phenotypes were more moderate than those of Gata2+/- HSCs. Consistent with the phenotypic characterization, Gata2 expression in +9.5+/- LSKs was moderately higher than that in Gata2+/- LSKs, but lower than that in WT LSKs. Our data suggest that +9.5 deficiency compromises, without completely abrogating, Gata2 expression in adult HSCs.


Asunto(s)
Hematopoyesis , Mesonefro , Animales , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Mamíferos
20.
J Biol Chem ; 285(41): 31087-93, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20670937

RESUMEN

Transcriptional networks orchestrate complex developmental processes. Such networks are commonly instigated by master regulators of development. Considerable progress has been made in elucidating GATA factor-dependent genetic networks that control blood cell development. GATA-2 is required for the genesis and/or function of hematopoietic stem cells, whereas GATA-1 drives the differentiation of hematopoietic progenitors into a subset of the blood cell lineages. GATA-1 directly represses Gata2 transcription, and this involves GATA-1-mediated displacement of GATA-2 from chromatin, a process termed a GATA switch. GATA switches occur at numerous loci with critical functions, indicating that they are widely utilized developmental control tools.


Asunto(s)
Diferenciación Celular/fisiología , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA2/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Madre Hematopoyéticas/metabolismo , Transcripción Genética/fisiología , Animales , Cromatina/genética , Cromatina/metabolismo , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA2/genética , Células Madre Hematopoyéticas/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA