Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Orthop ; 31: 45-51, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368732

RESUMEN

Purpose: Cartilage-derived chondroprogenitors have been reported to possess the biological potential for cartilage repair. However, its inherent chondrogenic potential in pellet culture needs evaluation. In-vitro cartilage regeneration models based on pellet cultures have been employed to evaluate the chondrogenic potential of stem cells. Evaluation of the degree of differentiation routinely involves paraffin embedding, sectioning, and immunohistochemical staining of the pellet. However, since chondrogenic differentiation is commonly non-uniform, processing random sections could lead to inaccurate conclusions. The study aimed at assessing the inherent lineage bias of chondroprogenitors with and without chondrogenic induction, using a novel whole pellet processing technique. Methods: Human chondroprogenitors (n=3) were evaluated for MSC markers and processed in pellet cultures either with stromal medium (uninduced) or chondrogenic differentiation medium (induced) for 28 days. The whole pellets and the conventional paraffin-embedded sectioned pellets were subjected to Collagen type II immunostaining and assessed using confocal laser microscopy. The staining intensities of the whole pellet were compared to the paraffin sections and revalidated using qRT-PCR for COL2A1 expression. Results: Uninduced and induced pellets displayed Collagen type II in all the layers with comparable fluorescence intensities. COL2A1 expression in both pellets was comparable to confocal results. The study demonstrated that uninduced chondroprogenitors in pellet culture possess promising inherent chondrogenic potential. Confocal imaging of whole pellets displayed different degrees of chondrogenic differentiation in the entire pellet, thus its probable in-vivo behavior. Conclusion: The novel approach presented in this study could serve as an efficient in-vitro alternative for understanding translational application for cartilage repair.

2.
Sci Rep ; 11(1): 23685, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880351

RESUMEN

Cell-based therapy for articular hyaline cartilage regeneration predominantly involves the use of mesenchymal stem cells and chondrocytes. However, the regenerated repair tissue is suboptimal due to the formation of mixed hyaline and fibrocartilage, resulting in inferior long-term functional outcomes. Current preclinical research points towards the potential use of cartilage-derived chondroprogenitors as a viable option for cartilage healing. Fibronectin adhesion assay-derived chondroprogenitors (FAA-CP) and migratory chondroprogenitors (MCP) exhibit features suitable for neocartilage formation but are isolated using distinct protocols. In order to assess superiority between the two cell groups, this study was the first attempt to compare human FAA-CPs with MCPs in normoxic and hypoxic culture conditions, investigating their growth characteristics, surface marker profile and trilineage potency. Their chondrogenic potential was assessed using mRNA expression for markers of chondrogenesis and hypertrophy, glycosaminoglycan content (GAG), and histological staining. MCPs displayed lower levels of hypertrophy markers (RUNX2 and COL1A1), with normoxia-MCP exhibiting significantly higher levels of chondrogenic markers (Aggrecan and COL2A1/COL1A1 ratio), thus showing superior potential towards cartilage repair. Upon chondrogenic induction, normoxia-MCPs also showed significantly higher levels of GAG/DNA with stronger staining. Focused research using MCPs is required as they can be suitable contenders for the generation of hyaline-like repair tissue.


Asunto(s)
Regeneración Ósea , Cartílago Articular/fisiología , Condrogénesis , Fibronectinas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Adipogénesis , Biomarcadores , Ciclo Celular , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA