Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(2): 029901, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512238

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.124.104501.

2.
Phys Rev Lett ; 124(10): 104501, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216417

RESUMEN

An intrinsic feature of turbulent flows is an enhanced rate of mixing and kinetic energy dissipation due to the rapid generation of small-scale motions from large-scale excitation. The transfer of kinetic energy from large to small scales is commonly attributed to the stretching of vorticity by the strain rate, but strain self-amplification also plays a role. Previous treatments of this connection are phenomenological or inexact, or cannot distinguish the contribution of vorticity stretching from that of strain self-amplification. In this Letter, an exact relationship is derived which quantitatively establishes how intuitive multiscale mechanisms such as vorticity stretching and strain self-amplification together actuate the interscale transfer of energy in turbulence. Numerical evidence verifies this result and uses it to demonstrate that the contribution of strain self-amplification to energy transfer is higher than that of vorticity stretching, but not overwhelmingly so.

3.
J Appl Clin Med Phys ; 19(2): 258-264, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29476603

RESUMEN

PURPOSE: Validating deformable multimodality image registrations is challenging due to intrinsic differences in signal characteristics and their spatial intensity distributions. Evaluating multimodality registrations using these spatial intensity distributions is also complicated by the fact that these metrics are often employed in the registration optimization process. This work evaluates rigid and deformable image registrations of the prostate in between diagnostic-MRI and radiation treatment planning-CT by utilizing a planning-MRI after fiducial marker placement as a surrogate. The surrogate allows for the direct quantitative analysis that can be difficult in the multimodality domain. METHODS: For thirteen prostate patients, T2 images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day as the planning-CT (planning-MRI). The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available algorithm which synthesizes a deformable image registration (DIR) algorithm from local rigid registrations. The planning-MRI provided an independent surrogate for the planning-CT for assessing registration accuracy using image similarity metrics, including Pearson correlation and normalized mutual information (NMI). A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb, and combined areas. RESULTS: The planning-MRI provided an excellent surrogate for the planning-CT with residual error in fiducial alignment between the two datasets being submillimeter, 0.78 mm. DIR was superior to the rigid registration in 11 of 13 cases demonstrating a 27.37% improvement in NMI (P < 0.009) within a regional area surrounding the prostate and associated critical organs. Pearson correlations showed similar results, demonstrating a 13.02% improvement (P < 0.013). CONCLUSION: By utilizing the planning-MRI as a surrogate for the planning-CT, an independent evaluation of registration accuracy is possible. This population provides an ideal testing ground for MRI to CT DIR by obviating the need for multimodality comparisons which are inherently more challenging.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Anciano , Femenino , Marcadores Fiduciales , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
4.
J Appl Clin Med Phys ; 17(3): 158-170, 2016 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-27167273

RESUMEN

"Reg Refine" is a tool available in the MIM Maestro v6.4.5 platform (www.mim-software.com) that allows the user to actively participate in the deformable image registration process. The purpose of this work was to evaluate the efficacy of this tool and investigate strategies for how to apply it effectively. This was done by performing DIR on two publicly available ground-truth models, the Pixel-based Breathing Thorax Model (POPI) for lung, and the Deformable Image Registration Evaluation Project (DIREP) for head and neck. Image noise matched in both magnitude and texture to clinical CBCT scans was also added to each model to simulate the use case of CBCT-CT alignment. For lung, the results showed Reg Refine effective at improving registration accuracy when controlled by an expert user within the context of large lung deformation. CBCT noise was also shown to have no effect on DIR performance while using the MIM algorithm for this site. For head and neck, the results showed CBCT noise to have a large effect on the accuracy of registration, specifically for low-contrast structures such as the brain-stem and parotid glands. In these cases, the Reg Refine tool was able to improve the registration accuracy when controlled by an expert user. Several strategies for how to achieve these results have been outlined to assist other users and provide feedback for developers of similar tools.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada de Haz Cónico/instrumentación , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Pulmón/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos
5.
J Appl Clin Med Phys ; 17(3): 25-40, 2016 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-27167256

RESUMEN

Benchmarking is a process in which standardized tests are used to assess system performance. The data produced in the process are important for comparative purposes, particularly when considering the implementation and quality assurance of DIR algorithms. In this work, five commercial DIR algorithms (MIM, Velocity, RayStation, Pinnacle, and Eclipse) were benchmarked using a set of 10 virtual phantoms. The phantoms were previously developed based on CT data collected from real head and neck patients. Each phantom includes a start of treatment CT dataset, an end of treatment CT dataset, and the ground-truth deformation vector field (DVF) which links them together. These virtual phantoms were imported into the commercial systems and registered through a deformable process. The resulting DVFs were compared to the ground-truth DVF to determine the target registration error (TRE) at every voxel within the image set. Real treatment plans were also recalculated on each end of treatment CT dataset and the dose transferred according to both the ground-truth and test DVFs. Dosimetric changes were assessed, and TRE was correlated with changes in the DVH of individual structures. In the first part of the study, results show mean TRE on the order of 0.5 mm to 3 mm for all phan-toms and ROIs. In certain instances, however, misregistrations were encountered which produced mean and max errors up to 6.8 mm and 22 mm, respectively. In the second part of the study, dosimetric error was found to be strongly correlated with TRE in the brainstem, but weakly correlated with TRE in the spinal cord. Several interesting cases were assessed which highlight the interplay between the direction and magnitude of TRE and the dose distribution, including the slope of dosimetric gradients and the distance to critical structures. This information can be used to help clinicians better implement and test their algorithms, and also understand the strengths and weaknesses of a dose adaptive approach.


Asunto(s)
Algoritmos , Neoplasias de Cabeza y Cuello/patología , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Benchmarking , Femenino , Humanos , Masculino , Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X
6.
Aesthet Surg J Open Forum ; 6: ojae047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006064

RESUMEN

Background: The driving force for many seeking plastic surgery is comfort in one's body. Along with comfort come satisfaction, improved self-awareness, and potential change in interoceptive awareness-a term defined as the conscious perception of one's body. Although conscious perception of bodily signals is influenced by many factors, sense of self and body image play significant roles. Studies show diminished interoceptive awareness in those with negative body image, but no research has assessed the impact of change in body image on interoceptive awareness. Objectives: The purpose of this study is to investigate how interoceptive awareness changes following elective breast surgery. Methods: The Multidimensional Assessment of Interoceptive Awareness Version 2 (MAIA-2) was administered to females undergoing breast surgery. A baseline survey was administered preoperatively, with follow-up surveys at 1 week, 1 month, and 3 months postoperatively. Results: Data were collected from 39 females and analyzed using paired t-tests to compare MAIA-2 overall and subscores over time. Significance was seen at 1 week for subcategories of "not distracting" and "trust," at 1 month for "trust," and 3 months for "not worrying," "emotional awareness," "self-regulation," and "trust." Overall survey averages were significantly increased at all postoperative intervals. Conclusions: From this study, it can be concluded that breast surgery positively impacts interoceptive awareness. These findings are clinically relevant as they offer providers' insight into the psychological effects of breast procedures. A comprehensive understanding of procedure outcomes enables providers to educate patients on both anticipated physical results and changes in sense of self.

7.
Cancers (Basel) ; 16(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398171

RESUMEN

PURPOSE: To demonstrate the feasibility of improving prostate cancer patient outcomes with PBS proton LETd optimization. METHODS: SFO, IPT-SIB, and LET-optimized plans were created for 12 patients, and generalized-tissue and disease-specific LET-dependent RBE models were applied. The mean LETd in several structures was determined and used to calculate mean RBEs. LETd- and dose-volume histograms (LVHs/DVHs) are shown. TODRs were defined based on clinical dose goals and compared between plans. The impact of robust perturbations on LETd, TODRs, and DVH spread was evaluated. RESULTS: LETd optimization achieved statistically significant increased target volume LETd of ~4 keV/µm compared to SFO and IPT-SIB LETd of ~2 keV/µm while mitigating OAR LETd increases. A disease-specific RBE model predicted target volume RBEs > 1.5 for LET-optimized plans, up to 18% higher than for SFO plans. LET-optimized target LVHs/DVHs showed a large increase not present in OARs. All RBE models showed a statistically significant increase in TODRs from SFO to IPT-SIB to LET-optimized plans. RBE = 1.1 does not accurately represent TODRs when using LETd optimization. Robust evaluations demonstrated a trade-off between increased mean target LETd and decreased DVH spread. CONCLUSION: The demonstration of improved TODRs provided via LETd optimization shows potential for improved patient outcomes.

8.
Med Phys ; 51(5): 3165-3172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588484

RESUMEN

BACKGROUND: Simulated error training is a method to practice error detection in situations where the occurrence of error is low. Such is the case for the physics plan and chart review where a physicist may check several plans before encountering a significant problem. By simulating potentially hazardous errors, physicists can become familiar with how they manifest and learn from mistakes made during a simulated plan review. PURPOSE: The purpose of this project was to develop a series of training datasets that allows medical physicists and trainees to practice plan and chart reviews in a way that is familiar and accessible, and to provide exposure to the various failure modes (FMs) encountered in clinical scenarios. METHODS: A series of training datasets have been developed that include a variety of embedded errors based on the risk-assessment performed by American Association of Physicists in Medicine (AAPM) Task Group 275 for the physics plan and chart review. The training datasets comprise documentation, screen shots, and digital content derived from common treatment planning and radiation oncology information systems and are available via the Cloud-based platform ProKnow. RESULTS: Overall, 20 datasets have been created incorporating various software systems (Mosaiq, ARIA, Eclipse, RayStation, Pinnacle) and delivery techniques. A total of 110 errors representing 50 different FMs were embedded with the 20 datasets. The project was piloted at the 2021 AAPM Annual Meeting in a workshop where participants had the opportunity to review cases and answer survey questions related to errors they detected and their perception of the project's efficacy. In general, attendees detected higher-priority FMs at a higher rate, though no correlation was found between detection rate and the detectability of the FMs. Familiarity with a given system appeared to play a role in detecting errors, specifically when related to missing information at different locations within a given software system. Overall, 96% of respondents either agreed or strongly agreed that the ProKnow portal and training datasets were effective as a training tool, and 75% of respondents agreed or strongly agreed that they planned to use the tool at their local institution. CONCLUSIONS: The datasets and digital platform provide a standardized and accessible tool for training, performance assessment, and continuing education regarding the physics plan and chart review. Work is ongoing to expand the project to include more modalities, radiation oncology treatment planning and information systems, and FMs based on emerging techniques such as auto-contouring and auto-planning.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Planificación de la Radioterapia Asistida por Computador/métodos , Física Sanitaria/educación , Humanos , Errores Médicos/prevención & control
9.
Cancers (Basel) ; 15(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37568697

RESUMEN

PURPOSE: To investigate the feasibility of using cone-beam computed tomography (CBCT)-derived synthetic CTs to monitor the daily dose and trigger a plan review for adaptive proton therapy (APT) in head and neck cancer (HNC) patients. METHODS: For 84 HNC patients treated with proton pencil-beam scanning (PBS), same-day CBCT and verification CT (vfCT) pairs were retrospectively collected. The ground truth CT (gtCT) was created by deforming the vfCT to the same-day CBCT, and it was then used as a dosimetric baseline and for establishing plan review trigger recommendations. Two different synthetic CT algorithms were tested; the corrected CBCT (corrCBCT) was created using an iterative image correction method and the virtual CT (virtCT) was created by deforming the planning CT to the CBCT, followed by a low-density masking process. Clinical treatment plans were recalculated on the image sets for evaluation. RESULTS: Plan review trigger criteria for adaptive therapy were established after closely reviewing the cohort data. Compared to the vfCT, the corrCBCT and virtCT reliably produced dosimetric data more similar to the gtCT. The average discrepancy in D99 for high-risk clinical target volumes (CTV) was 1.1%, 0.7%, and 0.4% and for standard-risk CTVs was 1.8%, 0.5%, and 0.5% for the vfCT, corrCBCT, and virtCT, respectively. CONCLUSION: Streamlined APT has been achieved with the proposed plan review criteria and CBCT-based synthetic CT workflow.

10.
Cancers (Basel) ; 15(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37345155

RESUMEN

BACKGROUND: Vestibular schwannomas (VS) are benign intracranial tumors caused by loss of function of the merlin tumor suppressor. We tested three hypotheses related to radiation, hearing loss (HL), and VS cell survival: (1) radiation causes HL by injuring auditory hair cells (AHC), (2) fractionation reduces radiation-induced HL, and (3) single fraction and equivalent appropriately dosed multi-fractions are equally effective at controlling VS growth. We investigated the effects of single fraction and hypofractionated radiation on hearing thresholds in rats, cell death pathways in rat cochleae, and viability of human merlin-deficient Schwann cells (MD-SC). METHODS: Adult rats received cochlear irradiation with single fraction (0 to 18 Gray [Gy]) or hypofractionated radiation. Auditory brainstem response (ABR) testing was performed for 24 weeks. AHC viabilities were determined using immunohistochemistry. Neonatal rat cochleae were harvested after irradiation, and gene- and cell-based assays were conducted. MD-SCs were irradiated, and viability assays and immunofluorescence for DNA damage and cell cycle markers were performed. RESULTS: Radiation caused dose-dependent and progressive HL in rats and AHC losses by promoting expression of apoptosis-associated genes and proteins. When compared to 12 Gy single fraction, hypofractionation caused smaller ABR threshold and pure tone average shifts and was more effective at reducing MD-SC viability. CONCLUSIONS: Investigations into the mechanisms of radiation ototoxicity and VS radiobiology will help determine optimal radiation regimens and identify potential therapies to mitigate radiation-induced HL and improve VS tumor control.

11.
Plast Reconstr Surg Glob Open ; 11(8): e5130, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37534110

RESUMEN

Immediate expander/implant-based breast reconstruction after mastectomy has become more sought after by patients. Although many patients choose this technique due to good aesthetic outcomes, lack of donor site morbidity, and shorter procedure times, it is not without complications. The most reported complications include seroma, infection, hematoma, mastectomy flap necrosis, wound dehiscence, and implant exposure, with an overall complication rate as high as 45%. Closed incision negative pressure therapy (ciNPT) has shown value in wound healing and reducing complications; however, the current literature is inconclusive. We aimed to examine if ciNPT improves outcomes for patients receiving this implant-based reconstruction. Methods: This is a retrospective single-institution study evaluating the ciNPT device, 3M Prevena Restor BellaForm, on breast reconstruction patients. The study was performed between July 1, 2019 and October 30, 2020, with 125 patients (232 breasts). Seventy-seven patients (142 breasts) did not receive the ciNPT dressing, and 48 patients (90 breasts) received the ciNPT dressing. Primary outcomes were categorized by major or minor complications. Age, BMI, and final drain removal were summarized using medians and quartiles, and were compared with nonparametric Mann-Whitney test. Categorical variables were compared using chi-square or Fisher exact test. Results: There was a statistically significant reduction in major complications in the ciNPT group versus the standard dressing group (P = 0.0247). Drain removal time was higher in the ciNPT group. Conclusion: Our study shows that ciNPT may help reduce major complication rates in implant-based breast reconstruction patients.

12.
Int J Part Ther ; 9(3): 18-29, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36721483

RESUMEN

Purpose: When treating esophageal cancer with radiation therapy, it is critical to limit the dose to surrounding structures, such as the lung and/or heart, as much as possible. Proton radiation therapy allows a reduced radiation dose to both the heart and lungs, potentially reducing the risk of cardiopulmonary toxicity. Here, we report disease control, survival, and toxicity outcomes among patients with esophageal cancer treated with proton radiation therapy and concurrent chemotherapy (chemoradiation therapy; CRT) with or without surgery. Materials and Methods: We enrolled 17 patients with thoracic esophageal carcinoma on a prospective registry between 2010 and 2021. Patients received proton therapy to a median dose of 50.4-GyRBE (range, 50.4-64.8) in 1.8-Gy fractions.Acute and late toxicities were graded per the Common Terminology Criteria for Adverse Events, version 4.0 (US National Cancer Institute, Bethesda, Maryland). In addition, disease control, patterns of failure, and survival outcomes were collected. Results: Nine patients received preoperative CRT, and 8 received definitive CRT. Overall, 88% of patients had adenocarcinoma, and 12% had squamous cell carcinoma. With a median follow-up of 2.1 years (range, 0.5-9.4), the 3-year local progression-free, disease-free, and overall survival rates were 85%, 66%, and 55%, respectively. Two patients (1 with adenocarcinoma and 1 with squamous cell carcinoma) recurred at the primary site after refusing surgery after a complete clinical response to CRT. The most common acute nonhematologic and hematologic toxicities, respectively, were grades 1 to 3 esophagitis and grades 1 to 4 leukopenia, both affecting 82% of patients. No acute cardiopulmonary toxicities were observed in the absence of surgical resection. Reagarding surgical complications, 3 postoperative cardiopulmonary complications occurred as follows: 1 grade 1 pleural effusion, 1 grade 3 pleural effusion, and 1 grade 2 anastomotic leak. Two severe late CRT toxicities occurred: 1 grade 5 tracheoesophageal fistula and 1 grade 3 esophageal stenosis requiring a feeding tube. Conclusion: Proton radiation therapy is a safe, effective treatment for esophageal cancer with increasing evidence supporting its role in reducing cardiopulmonary toxicity.

13.
Med Phys ; 49(1): 15-22, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34780068

RESUMEN

PURPOSE: The purpose of this study was to develop and preliminarily test a radiotherapy system for patient posture correction and alignment using mixed reality (MixR) visualization. The write-up of this work also provides an opportunity to introduce the concepts and technology of MixR for a medical physics audience who may be unfamiliar with the topic. METHODS: A MixR application was developed for on optical-see-through head-mounted display (HoloLens 2) allowing a user to simultaneously and directly view a patient and a reference hologram derived from their simulation CT scan. The hologram provides a visual reference for the exact posture needed during treatment and is initialized in relation to the origin of a radiotherapy device using marker-based tracking. The system further provides marker-less tracking that allows the user tofreely navigate the room as they view and align the patient from various angles. The system was preliminarily tested using both a rigid (pelvis) and nonrigid (female mannequin) anthropomorphic phantom. Each phantom was aligned via hologram and accuracy quantified using CBCT and CT. RESULTS: A fully realized system was developed. Rigid registration accuracy was on the order of 3.0 ± 1.5 mm based on the performance of three users repeating alignment five times each. The lateral direction showed the most variability among users and was associated with the largest off-sets (approximately 2.0 mm). For nonrigid alignment, the MixR setup outperformed a setup based on three-point alignment and setup photos, the latter of which showed a difference in arm position of 2 cm and a torso roll of 6-7°. CONCLUSIONS: MixR visualization is a rapidly emerging domain that has the potential to significantly impact the field of medicine. The current application is an illustration of this and highlights the advantages of MixR for patient setup in radiation oncology. The key feature of the system is the way in which it transforms nonrigid registration into rigid registration by providing an efficient, portable, and cost-effective mechanism for reproducing patient posture without the use of ionizing radiation. Preliminary estimates of registration accuracy indicate clinical viability and form the foundation for further development and clinical testing.


Asunto(s)
Realidad Aumentada , Abdomen , Simulación por Computador , Femenino , Humanos , Fantasmas de Imagen , Postura
14.
Med Phys ; 49(8): e983-e1023, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35662032

RESUMEN

The task group (TG) on magnetic resonance imaging (MRI) implementation in high-dose-rate (HDR) brachytherapy (BT)-Considerations from simulation to treatment, TG 303, was constituted by the American Association of Physicists in Medicine's (AAPM's) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on-going quality assurance (QA). Additionally, the TG was charged with describing HDR BT workflows and evaluating practical consideration that arise when implementing MR imaging. For brevity, the report is focused on the treatment of gynecologic and prostate cancer. The TG report provides an introduction and rationale for MRI implementation in BT, a review of previous publications on topics including available applicators, clinical trials, previously published BT-related TG reports, and new image-guided recommendations beyond CT-based practices. The report describes MRI protocols and methodologies, including recommendations for the clinical implementation and logical considerations for MR imaging for HDR BT. Given the evolution from prescriptive to risk-based QA, an example of a risk-based analysis using MRI-based, prostate HDR BT is presented. In summary, the TG report is intended to provide clear and comprehensive guidelines and recommendations for commissioning, clinical implementation, and QA for MRI-based HDR BT that may be utilized by the medical physics community to streamline this process. This report is endorsed by the American Brachytherapy Society.


Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Braquiterapia/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Próstata , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Estados Unidos
15.
J Magn Reson Imaging ; 33(1): 143-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21182132

RESUMEN

PURPOSE: To determine the tracking factor by studying the relationship between kidney and diaphragm motions and to compare the efficiency of the gating-and-following and gating-only algorithms in reducing motion artifacts in navigator-gated scans. MATERIALS AND METHODS: Diaphragm and kidney motions were measured by using real-time TrueFISP sequences from 10 healthy human volunteers to determine tracking factors at different acceptance windows. Mean tracking factors were used to calculate mean residual errors and improvement factors for the gating-and-following and gating-only algorithms. RESULTS: Mean tracking factors for ± 4, ± 6, ± 8 mm and full acceptance windows ranged from 0.6 to 0.7, with large interindividual variations. Acceptance rates increased as the size of the acceptance window increased (acceptance rate for a 4 mm window ∼50%). There was a greater reduction of motion errors by gating-and-following (maximum of 1.86 mm) than gating-only (maximum of 7.05 mm). CONCLUSION: Mean tracking factors obtained in this study can be used as a guideline for using the gating-and-following algorithm in navigator-gated kidney scans. The gating-and-following and gating-only algorithms were quantitatively compared, and it was found that the former is more effective in reducing motion errors.


Asunto(s)
Riñón/anatomía & histología , Riñón/fisiología , Hígado/anatomía & histología , Hígado/fisiología , Imagen por Resonancia Magnética/métodos , Mecánica Respiratoria , Técnicas de Imagen Sincronizada Respiratorias/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Med Phys ; 38(2): 1008-17, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21452738

RESUMEN

PURPOSE: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. METHODS: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific and patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. RESULTS: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. CONCLUSIONS: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences. For large patients, difference in soft tissue attenuation can be large. In these cases, patient-phantom matching proves most effective as differences in soft tissue attenuation are mitigated. With increasing obesity rates, overweight patients will continue to make up a growing fraction of all patients undergoing medical imaging. Thus, having phantoms that better represent this population represents a considerable improvement over previous methods. In response to this study, additional phantoms representing heavier weight percentiles will be added to the UFHADM and UFHADF patient-dependent series.


Asunto(s)
Fluoroscopía/instrumentación , Fantasmas de Imagen , Dosis de Radiación , Adulto , Estatura , Peso Corporal , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Tomografía Computarizada por Rayos X
17.
Med Phys ; 38(10): 5490-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21992367

RESUMEN

PURPOSE: To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. METHODS: In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. RESULTS: Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in-clinic monitor of an interventional fluoroscopy system. CONCLUSIONS: The skin dose mapping program developed in this work represents a new tool that, as the RDSR becomes available through automated export or real-time streaming, can provide the interventional physician information needed to modify behavior when clinically appropriate. The program is nonproprietary and transferable, and also functions independent to the software systems already installed on the control room workstation. The next step will be clinical implementation where the workflow will be optimized along with further analysis of real-time capabilities.


Asunto(s)
Fluoroscopía/métodos , Radiología Intervencionista/métodos , Piel/efectos de la radiación , Algoritmos , Antropometría , Automatización , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Humanos , Imagenología Tridimensional/métodos , Modelos Anatómicos , Modelos Estadísticos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Piel/patología , Programas Informáticos , Rayos X
18.
Cancers (Basel) ; 13(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34830844

RESUMEN

(1) Background and purpose: clinical trials have unsuccessfully tried to de-escalate treatment in locally advanced human papillomavirus positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) with the goal of reducing treatment toxicity. The aim of this study was to explore the role of radiomics for risk stratification in this patient population to guide treatment. (2) Methods: the study population consisted of 225 patients with locally advanced HPV+ OPSCC treated with curative-intent radiation or chemoradiation therapy. Appearance of distant metastasis was used as the endpoint event. Radiomics data were extracted from the gross tumor volumes (GTVs) identified on the planning CT, with gray level being discretized using three different bin widths (8, 16, and 32). The data extracted for the groups with and without distant metastasis were subsequently balanced using three different algorithms including synthetic minority over-sampling technique (SMOTE), adaptive synthetic sampling (ADASYN), and borderline SMOTE. From these different combinations, a total of nine radiomics datasets were derived. Top features that minimized redundancy while maximizing relevance to the endpoint were selected individually and collectively for the nine radiomics datasets to build support vector machine (SVM) based predictive classifiers. Performance of the developed classifiers was evaluated by receiver operating characteristic (ROC) curve analysis. (3) Results: of the 225 locally advanced HPV+ OPSCC patients being studied, 9.3% had developed distant metastases at last follow-up. SVM classifiers built for the nine radiomics dataset using either their own respective top features or the top consensus ones were all able to differentiate the two cohorts at a level of excellence or beyond, with ROC area under curve (AUC) ranging from 0.84 to 0.95 (median = 0.90). ROC comparisons further revealed that the majority of the built classifiers did not distinguish the two cohorts significantly better than each other. (4) Conclusions: radiomics demonstrated discriminative ability in distinguishing patients with locally advanced HPV+ OPSCC who went on to develop distant metastasis after completion of definitive chemoradiation or radiation alone and may serve to risk stratify this patient population with the purpose of guiding the appropriate therapy.

19.
Front Oncol ; 11: 611469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490075

RESUMEN

BACKGROUND: Although there are some controversies regarding whole pelvic radiation therapy (WPRT) due to its gastrointestinal and hematologic toxicities, it is considered for patients with gynecological, rectal, and prostate cancer. To effectively spare organs-at-risk (OAR) doses using multi-leaf collimator (MLC)'s optimal segments, potential dosimetric benefits in volumetric modulated arc therapy (VMAT) using a half-beam technique (HF) were investigated for WPRT. METHODS: While the size of a fully opened field (FF) was decided to entirely include a planning target volume in all beam's eye view across arc angles, the HF was designed to use half the FF from the isocenter for dose optimization. The left or the right half of the FF was alternatively opened in VMAT-HF using a pair of arcs rotating clockwise and counterclockwise. Dosimetric benefits of VMAT-HF, presented with dose conformity, homogeneity, and dose-volume parameters in terms of modulation complex score, were compared to VMAT optimized using the FF (VMAT-FF). Consequent normal tissue complication probability (NTCP) by reducing the irradiated volumes was evaluated as well as dose-volume parameters with statistical analysis for OAR. Moreover, beam-on time and MLC position precision were analyzed with log files to assess plan deliverability and clinical applicability of VMAT-HF as compared to VMAT-FF. RESULTS: While VMAT-HF used 60%-70% less intensity modulation complexity than VMAT-FF, it showed superior dose conformity. The small intestine and colon in VMAT-HF showed a noticeable reduction in the irradiated volumes of up to 35% and 15%, respectively, at an intermediate dose of 20-45 Gy. The small intestine showed statistically significant dose sparing at the volumes that received a dose from 15 to 45 Gy. Such a dose reduction for the small intestine and colon in VMAT-HF presented a significant NTCP reduction from that in VMAT-FF. Without sacrificing the beam delivery efficiency, VMAT-HF achieved effective OAR dose reduction in dose-volume histograms. CONCLUSIONS: VMAT-HF led to deliver conformal doses with effective gastrointestinal-OAR dose sparing despite using less modulation complexity. The dose of VMAT-HF was delivered with the same beam-on time with VMAT-FF but precise MLC leaf motions. The VMAT-HF potentially can play a valuable role in reducing OAR toxicities associated with WPRT.

20.
Radiat Environ Biophys ; 49(2): 155-68, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20039051

RESUMEN

As outlined in NCRP Report No. 160 of the US National Council on Radiation Protection and Measurements (NCRP), the average value of the effective dose to exposed individuals in the United States has increased by a factor of 1.7 over the time period 1982-2006, with the contribution of medical exposures correspondingly increasing by a factor of 5.7. At present, medical contributors to effective dose include computed tomography (50% of total medical exposure), nuclear medicine (25%), interventional fluoroscopy (15%), and conventional radiography and diagnostic fluoroscopy (10%). An increased awareness of medical exposures has led to a gradual shift in the focus of radiation epidemiological studies from traditional occupational and environmental exposures to those focusing on cohorts of medical patients exposed to both diagnostic and therapeutic sources. The assignment of organ doses to patients in either a retrospective or a prospective study has increasingly relied on the use of computational anatomic phantoms. In this paper, we review the various methods and approaches used to construct patient models to include anthropometric databases, cadaver imaging, prospective volunteer imaging studies, and retrospective image reviews. Phantom format types--stylized, voxel, and hybrid--as well as phantom morphometric categories--reference, patient-dependent, and patient-specific--are next defined and discussed. Specific emphasis is given to hybrid phantoms-those defined through the use of combinations of polygon mesh and non-uniform rational B-spline (NURBS) surfaces. The concept of a patient-dependent phantom is reviewed, in which phantoms of non-50th percentile heights and weights are designed from population-based morphometric databases and provided as a larger library of phantoms for patient matching and lookup of refined values of organ dose coefficients and/or radionuclide S values. We close with two brief examples of the use of hybrid phantoms in medical dose reconstruction--diagnostic nuclear medicine for pediatric subjects and interventional fluoroscopy for adult patients.


Asunto(s)
Simulación por Computador , Fantasmas de Imagen , Radiometría/instrumentación , Humanos , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA