Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 137(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533727

RESUMEN

Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.


Asunto(s)
Conexinas , Animales , Comunicación Celular/fisiología , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Queratinocitos/metabolismo , Mamíferos/metabolismo , Humanos
2.
Clin Neuropathol ; 42(4): 140-149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073958

RESUMEN

Brain metastases are the most common central nervous system malignancy, and the leading cause of cancer-related deaths. Non-small cell lung carcinomas (NSCLC) comprise the most common cell of origin. Immunotherapy, particularly checkpoint inhibitors, has emerged as the standard of care for many patients with advanced lung cancer. Pannexin1 (PANX1) is a transmembrane glycoprotein that forms large-pore channels and has been reported to promote cancer metastasis. However, the roles of PANX1 in lung cancer brain metastases and tumor immune microenvironment have not been characterized. 42 patient-matched formalin-fixed paraffin-embedded tissue samples from lung carcinomas and the subsequent brain metastases were constructed into three tissue microarrays (TMAs). PANX1 and markers of tumor-infiltrating immune cells (CD3, CD4, CD8, CD68, and TMEM119) were assessed using immunohistochemistry and digital image analysis. The expression of PANX1 was significantly higher in brain metastases than in their paired primary lung carcinoma. The high levels of PANX1 in lung carcinoma cells in the brain inversely correlated with infiltration of peripheral blood-derived macrophages. Our findings highlight the role of PANX1 in the progression of metastatic NSCLC, and the potential therapeutic approach of targeting PANX1 enhances the efficacy of immune checkpoint inhibitors in brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Inmunohistoquímica , Neoplasias Encefálicas/secundario , Microambiente Tumoral , Proteínas del Tejido Nervioso/uso terapéutico , Conexinas/uso terapéutico
3.
J Biol Chem ; 296: 100478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33647315

RESUMEN

Melanoma is the most aggressive skin malignancy with increasing incidence worldwide. Pannexin1 (PANX1), a member of the pannexin family of channel-forming glycoproteins, regulates cellular processes in melanoma cells including proliferation, migration, and invasion/metastasis. However, the mechanisms responsible for coordinating and regulating PANX1 function remain unclear. Here, we demonstrated a direct interaction between the C-terminal region of PANX1 and the N-terminal portion of ß-catenin, a key transcription factor in the Wnt pathway. At the protein level, ß-catenin was significantly decreased when PANX1 was either knocked down or inhibited by two PANX1 blockers, Probenecid and Spironolactone. Immunofluorescence imaging showed a disrupted pattern of ß-catenin localization at the cell membrane in PANX1-deficient cells, and transcription of several Wnt target genes, including MITF, was suppressed. In addition, a mitochondrial stress test revealed that the metabolism of PANX1-deficient cells was impaired, indicating a role for PANX1 in the regulation of the melanoma cell metabolic profile. Taken together, our data show that PANX1 directly interacts with ß-catenin to modulate growth and metabolism in melanoma cells. These findings provide mechanistic insight into PANX1-mediated melanoma progression and may be applicable to other contexts where PANX1 and ß-catenin interact as a potential new component of the Wnt signaling pathway.


Asunto(s)
Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , beta Catenina/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Conexinas/genética , Conexinas/fisiología , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , beta Catenina/fisiología
4.
Int J Obes (Lond) ; 46(4): 726-738, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34897286

RESUMEN

BACKGROUND: Pannexin 3 (PANX3) is a channel-forming glycoprotein that enables nutrient-induced inflammation in vitro, and genetic linkage data suggest that it regulates body mass index. Here, we characterized inflammatory and metabolic parameters in global Panx3 knockout (KO) mice in the context of forced treadmill running (FEX) and high-fat diet (HFD). METHODS: C57BL/6N (WT) and KO mice were randomized to either a FEX running protocol or no running (SED) from 24 until 30 weeks of age. Body weight was measured biweekly, and body composition was measured at 24 and 30 weeks of age. Male WT and KO mice were fed a HFD from 12 to 28 weeks of age. Metabolic organs were analyzed for a panel of inflammatory markers and PANX3 expression. RESULTS: In females there were no significant differences in body composition between genotypes, which could be due to the lack of PANX3 expression in female white adipose tissue, while male KOs fed a chow diet had lower body weight and lower fat mass at 24 and 30 weeks of age, which was reduced to the same extent as 6 weeks of FEX in WT mice. In addition, male KO mice exhibited significantly lower expression of multiple pro-inflammatory genes in white adipose tissue compared to WT mice. While on a HFD body weight differences were insignificant, multiple inflammatory genes were significantly different in quadriceps muscle and white adipose tissue resulting in a more anti-inflammatory phenotype in KO mice compared to WT. The lower fat mass in male KO mice may be due to significantly fewer adipocytes in their subcutaneous fat compared to WT mice. Mechanistically, adipose stromal cells (ASCs) cultured from KO mice grow significantly slower than WT ASCs. CONCLUSION: PANX3 is expressed in male adult mouse adipose tissue and may regulate adipocyte numbers, influencing fat accumulation and inflammation.


Asunto(s)
Tejido Adiposo , Obesidad , Tejido Adiposo/metabolismo , Animales , Peso Corporal/fisiología , Dieta Alta en Grasa , Femenino , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo
5.
Dev Med Child Neurol ; 64(8): 965-970, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35170025

RESUMEN

AIM: To determine the relationship between motor abilities and intelligence in children and young people with prenatal alcohol exposure (PAE) being assessed for fetal alcohol spectrum disorder (FASD). METHOD: This was a cross-sectional correlational study of children and young people with PAE being assessed for FASD. The relationship between motor abilities (Movement Assessment Battery for Children, Second Edition) and intelligence (Wechsler Intelligence Scale for Children, Fourth or Fifth Edition) was calculated using correlation and regression analyses. Attention and executive function were considered as potential confounding variables. RESULTS: The relationship between motor abilities and intelligence in 73 children and young people (48 males, 25 females; aged 6-17y, mean age 10y 5mo [SD 2y 9mo]) assessed for FASD was small and statistically non-significant (r=0.05, p=0.67). INTERPRETATION: The findings confirm that motor abilities and intelligence should be assessed separately when investigating an FASD diagnosis. Intelligence scores should not be used to estimate motor abilities, nor should they dictate when motor testing be completed. Assessing intelligence and motor domains separately will enhance diagnostic accuracy, identify the need for strategies or interventions to address functional motor skills, and further define the role of physiotherapy and occupational therapy in FASD assessment and intervention.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Adolescente , Niño , Estudios Transversales , Femenino , Trastornos del Espectro Alcohólico Fetal/diagnóstico , Humanos , Inteligencia , Masculino , Destreza Motora , Embarazo
6.
Nature ; 493(7431): 231-5, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23201690

RESUMEN

Several of the thousands of human long non-coding RNAs (lncRNAs) have been functionally characterized; however, potential roles for lncRNAs in somatic tissue differentiation remain poorly understood. Here we show that a 3.7-kilobase lncRNA, terminal differentiation-induced ncRNA (TINCR), controls human epidermal differentiation by a post-transcriptional mechanism. TINCR is required for high messenger RNA abundance of key differentiation genes, many of which are mutated in human skin diseases, including FLG, LOR, ALOXE3, ALOX12B, ABCA12, CASP14 and ELOVL3. TINCR-deficient epidermis lacked terminal differentiation ultrastructure, including keratohyalin granules and intact lamellar bodies. Genome-scale RNA interactome analysis revealed that TINCR interacts with a range of differentiation mRNAs. TINCR-mRNA interaction occurs through a 25-nucleotide 'TINCR box' motif that is strongly enriched in interacting mRNAs and required for TINCR binding. A high-throughput screen to analyse TINCR binding capacity to approximately 9,400 human recombinant proteins revealed direct binding of TINCR RNA to the staufen1 (STAU1) protein. STAU1-deficient tissue recapitulated the impaired differentiation seen with TINCR depletion. Loss of UPF1 and UPF2, both of which are required for STAU1-mediated RNA decay, however, did not have differentiation effects. Instead, the TINCR-STAU1 complex seems to mediate stabilization of differentiation mRNAs, such as KRT80. These data identify TINCR as a key lncRNA required for somatic tissue differentiation, which occurs through lncRNA binding to differentiation mRNAs to ensure their expression.


Asunto(s)
Diferenciación Celular/genética , Células Epidérmicas , Epidermis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Secuencia de Bases , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Proteínas Filagrina , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Queratinocitos , Mutación , Motivos de Nucleótidos/genética , Unión Proteica , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Enfermedades de la Piel/genética
7.
BMC Pediatr ; 19(1): 171, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138161

RESUMEN

BACKGROUND: To evaluate the accuracy of motor assessment tools listed in Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan (Canadian Guideline) for the purpose of fetal alcohol spectrum disorder (FASD) diagnosis. Specifically, we aimed to determine: 1) diagnostic accuracy of motor assessment tools and subtests; 2) accuracy of multiple subtests versus total scores; and 3) accuracy of alternate cut-offs. METHODS: Cross-sectional diagnostic study of 63 children aged 6-17 years. Diagnostic accuracy and alternate cut-offs were calculated for the Movement Assessment Battery for Children, 2nd edition (MABC-2), Bruininks-Oseretsky Test of Motor Proficiency, 2nd edition Short Form (BOT-2SF) and Beery-Buktenica Developmental Test of Visual Motor Integration, 6th edition (BeeryVMI-6). RESULTS: The MABC-2 total motor score was more sensitive (0.30; 95% CI 0.17-0.46; p < 0.01) to motor impairment in the presence of FASD than the BOT-2SF (0.02; 95% CI 0.00-0.12) at the 2nd percentile (-2SD). The MABC-2 total motor score was more accurate than any combination of subtest scores. The Motor Coordination subtest of the BeeryVMI-6 (BeeryMC) at the 5th percentile (- 1.5SD) (sensitivity 0.68, specificity 0.90) was the most accurate subtest. CONCLUSIONS: The BOT-2SF was an inaccurate assessment tool for FASD diagnosis. The MABC-2 total motor score was the most accurate using current guidelines, though its sensitivity was still low. Further investigation into inclusion of single subtests and/or using a less conservative cut-off in the Canadian Guideline is warranted.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal/diagnóstico , Trastornos de la Destreza Motora/diagnóstico , Análisis y Desempeño de Tareas , Adolescente , Niño , Estudios Transversales , Femenino , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Guías como Asunto , Humanos , Masculino , Destreza Motora , Embarazo , Efectos Tardíos de la Exposición Prenatal/diagnóstico , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Sensibilidad y Especificidad
8.
Pediatr Blood Cancer ; 65(10): e27291, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29932283

RESUMEN

Angiomatoid fibrous histiocytoma (AFH) is a rare soft tissue tumor that has been associated with EWSR1-CREB1 gene fusion. Outcome in patients with unresectable distant metastases is generally fatal. Interleukin-6 (IL-6) secretion has been described in tumors with EWSR1-CREB1 fusion, and may promote tumor growth due to autocrine stimulation. Tocilizumab is an IL-6 receptor antibody that has potential benefit as a targeted therapy in refractory neoplasms with IL-6 secretion. We describe a child with metastatic AFH with EWSR1-CREB1 fusion and elevated IL-6 whose disease progressed during treatment with traditional chemotherapeutic agents, but improved after targeted therapy with tocilizumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Histiocitoma Fibroso Maligno/tratamiento farmacológico , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Preescolar , Síndrome de DiGeorge/complicaciones , Histiocitoma Fibroso Maligno/complicaciones , Histiocitoma Fibroso Maligno/genética , Humanos , Masculino , Proteínas de Fusión Oncogénica/genética , Neoplasias de los Tejidos Blandos/complicaciones , Neoplasias de los Tejidos Blandos/genética
9.
Int J Mol Sci ; 19(7)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932112

RESUMEN

Pannexins (Panx1, 2, 3) are channel-forming glycoproteins expressed in mammalian tissues. We previously reported that N-glycosylation acts as a regulator of the localization and intermixing of Panx1 and Panx3, but its effects on Panx2 are currently unknown. Panx1 and Panx2 intermixing can regulate channel properties, and both pannexins have been implicated in neuronal cell death after ischemia. Our objectives were to validate the predicted N-glycosylation site of Panx2 and to study the effects of Panx2 glycosylation on localization and its capacity to interact with Panx1. We used site-directed mutagenesis, enzymatic de-glycosylation, cell-surface biotinylation, co-immunoprecipitation, and confocal microscopy. Our results showed that N86 is the only N-glycosylation site of Panx2. Panx2 and the N86Q mutant are predominantly localized to the endoplasmic reticulum (ER) and cis-Golgi matrix with limited cell surface localization was seen only in the presence of Panx1. The Panx2 N86Q mutant is glycosylation-deficient and tends to aggregate in the ER reducing its cell surface trafficking but it can still interact with Panx1. Our study indicates that N-glycosylation may be important for folding and trafficking of Panx2. We found that the un-glycosylated forms of Panx1 and 2 can readily interact, regulating their localization and potentially their channel function in cells where they are co-expressed.


Asunto(s)
Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Asparagina/genética , Asparagina/metabolismo , Sitios de Unión/genética , Línea Celular , Conexinas/genética , Glicosilación , Células HEK293 , Humanos , Microscopía Confocal , Mutación , Unión Proteica , Transporte de Proteínas/genética , Ratas
10.
JAAPA ; 35(4): 62-64, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35348544
11.
J Pharmacol Exp Ther ; 350(3): 646-56, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24993360

RESUMEN

EPZ-5676 [(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-((((1r,3S)-3-(2-(5-(tert-butyl)-1H-benzo[d]imidazol-2-yl)ethyl)cyclobutyl)(isopropyl)amino)methyl)tetrahydrofuran-3,4-diol], a small-molecule inhibitor of the protein methyltransferase DOT1L, is currently under clinical investigation for acute leukemias bearing MLL-rearrangements (MLL-r). In this study, we evaluated EPZ-5676 in combination with standard of care (SOC) agents for acute leukemias as well as other chromatin-modifying drugs in cellular assays with three human acute leukemia cell lines: MOLM-13 (MLL-AF9), MV4-11 (MLL-AF4), and SKM-1 (non-MLL-r). Studies were performed to evaluate the antiproliferative effects of EPZ-5676 combinations in a cotreatment model in which the second agent was added simultaneously with EPZ-5676 at the beginning of the assay, or in a pretreatment model in which cells were incubated for several days in the presence of EPZ-5676 prior to the addition of the second agent. EPZ-5676 was found to act synergistically with the acute myeloid leukemia (AML) SOC agents cytarabine or daunorubicin in MOLM-13 and MV4-11 MLL-r cell lines. EPZ-5676 is selective for MLL-r cell lines as demonstrated by its lack of effect either alone or in combination in the nonrearranged SKM-1 cell line. In MLL-r cells, the combination benefit was observed even when EPZ-5676 was washed out prior to the addition of the chemotherapeutic agents, suggesting that EPZ-5676 sets up a durable, altered chromatin state that enhances the chemotherapeutic effects. Our evaluation of EPZ-5676 in conjunction with other chromatin-modifying drugs also revealed a consistent combination benefit, including synergy with DNA hypomethylating agents. These results indicate that EPZ-5676 is highly efficacious as a single agent and synergistically acts with other chemotherapeutics, including AML SOC drugs and DNA hypomethylating agents in MLL-r cells.


Asunto(s)
Antineoplásicos/administración & dosificación , Bencimidazoles/administración & dosificación , Proliferación Celular/efectos de los fármacos , Inhibidores de Crecimiento/administración & dosificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Metiltransferasas/antagonistas & inhibidores , Línea Celular Tumoral , Sinergismo Farmacológico , N-Metiltransferasa de Histona-Lisina , Humanos , Leucemia Mieloide Aguda/patología , Metilación/efectos de los fármacos , Metiltransferasas/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(17): 6915-20, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21474779

RESUMEN

Yeast Hsp104 and its bacterial homolog, ClpB, are Clp/Hsp100 molecular chaperones and AAA+ ATPases. Hsp104 and ClpB collaborate with the Hsp70 and DnaK chaperone systems, respectively, to retrieve and reactivate stress-denatured proteins from aggregates. The action of Hsp104 and ClpB in promoting cell survival following heat stress is species-specific: Hsp104 cannot function in bacteria and ClpB cannot act in yeast. To determine the regions of Hsp104 and ClpB necessary for this specificity, we tested chimeras of Hsp104 and ClpB in vivo and in vitro. We show that the Hsp104 and ClpB middle domains dictate the species-specificity of Hsp104 and ClpB for cell survival at high temperature. In protein reactivation assays in vitro, chimeras containing the Hsp104 middle domain collaborate with Hsp70 and those with the ClpB middle domain function with DnaK. The region responsible for the specificity is within helix 2 and helix 3 of the middle domain. Additionally, several mutants containing amino acid substitutions in helix 2 of the ClpB middle domain are defective in protein disaggregation in collaboration with DnaK. In a bacterial two-hybrid assay, DnaK interacts with ClpB and with chimeras that have the ClpB middle domain, implying that species-specificity is due to an interaction between DnaK and the middle domain of ClpB. Our results suggest that the interaction between Hsp70/DnaK and helix 2 of the middle domain of Hsp104/ClpB determines the specificity required for protein disaggregation both in vivo and in vitro, as well as for cellular thermotolerance.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Endopeptidasa Clp , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Oncol ; 18(4): 969-987, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38327091

RESUMEN

Immunotherapies for malignant melanoma seek to boost the anti-tumoral response of CD8+ T cells, but have a limited patient response rate, in part due to limited tumoral immune cell infiltration. Genetic or pharmacological inhibition of the pannexin 1 (PANX1) channel-forming protein is known to decrease melanoma cell tumorigenic properties in vitro and ex vivo. Here, we crossed Panx1 knockout (Panx1-/-) mice with the inducible melanoma model BrafCA, PtenloxP, Tyr::CreERT2 (BPC). We found that deleting the Panx1 gene in mice does not reduce BRAF(V600E)/Pten-driven primary tumor formation or improve survival. However, tumors in BPC-Panx1-/- mice exhibited a significant increase in the infiltration of CD8+ T lymphocytes, with no changes in the expression of early T-cell activation marker CD69, lymphocyte activation gene 3 protein (LAG-3) checkpoint receptor, or programmed cell death ligand-1 (PD-L1) in tumors when compared to the BPC-Panx1+/+ genotype. Our results suggest that, although Panx1 deletion does not overturn the aggressive BRAF/Pten-driven melanoma progression in vivo, it does increase the infiltration of effector immune T-cell populations in the tumor microenvironment. We propose that PANX1-targeted therapy could be explored as a strategy to increase tumor-infiltrating lymphocytes to boost anti-tumor immunity.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Ratones , Linfocitos T CD8-positivos/metabolismo , Conexinas/genética , Conexinas/uso terapéutico , Linfocitos Infiltrantes de Tumor , Melanoma/patología , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/patología , Microambiente Tumoral
14.
J Dev Behav Pediatr ; 44(7): e463-e469, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459379

RESUMEN

OBJECTIVE: Motor skill assessment is part of the fetal alcohol spectrum disorder (FASD) multidisciplinary assessment. Some clinicians opt to exclude assessment of the subcomponents of visual-motor integration (visual perception and motor coordination), on the assumption that challenges will be revealed based on the assessment of visual-motor integration. The objective is to describe the visual-motor integration, visual perception, and fine motor coordination pattern of abilities in children with confirmed prenatal alcohol exposure being assessed for fetal alcohol spectrum disorder. METHODS: This cross-sectional study included 91 children (65 males; mean age: 10 years, 6 months SD = 2 years, 10 months) undergoing assessment for FASD. Friedman and Wilcoxon statistics were used to compare mean visual-motor integration, visual perception, and fine motor coordination percentiles from the Beery-Buktenica Developmental Test of Visual-Motor Integration, Sixth Edition (Beery-6). RESULTS: Children being assessed for FASD (n = 91) had the highest normative scores in visual perception, followed by visual-motor integration and fine motor coordination (mean percentiles (SD): 35.9 (24.9), 20.6 (18.3), and 13.8 (15.5), respectively) (χ 2 distribution = 46.909, p ≤ 0.001). CONCLUSION: Children being assessed for FASD experience more challenges with fine motor coordination compared with visual-motor integration and visual perception tasks. This pattern differs from the pattern established for the general population in which tasks that require visual-motor integration are more challenging than tasks that isolate visual perception and fine motor coordination. These results suggest that fine motor coordination should be included in FASD diagnostic assessments and considered as an area for intervention.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Masculino , Humanos , Niño , Femenino , Embarazo , Trastornos del Espectro Alcohólico Fetal/diagnóstico , Trastornos del Espectro Alcohólico Fetal/epidemiología , Estudios Transversales , Efectos Tardíos de la Exposición Prenatal/diagnóstico , Destreza Motora , Percepción Visual
15.
J Invest Dermatol ; 143(8): 1509-1519.e14, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36813158

RESUMEN

The channel-forming glycoprotein PANX3 functions in cutaneous wound healing and keratinocyte differentiation, but its role in maintaining skin homeostasis through aging is not yet understood. We found that PANX3 is absent in newborn skin but becomes upregulated with age. We characterized the skin of global Panx3-knockout (KO) mice and found that KO dorsal skin showed sex differences at different ages but generally had reduced dermal and hypodermal areas compared with age-matched controls. Transcriptomic analysis of the KO epidermis revealed reduced E-cadherin stabilization and Wnt signaling compared with that of wild-type, consistent with the inability of primary KO keratinocytes to adhere in culture and diminished epidermal barrier function in KO mice. We also observed increased inflammatory signaling in the KO epidermis and a higher incidence of dermatitis in aged KO mice compared with that in wild-type controls. These findings suggest that during skin aging, PANX3 is critical in the maintenance of dorsal skin architecture, keratinocyte cell-cell and cell-matrix adhesion, and inflammatory skin responses.


Asunto(s)
Queratinocitos , Piel , Ratones , Animales , Femenino , Masculino , Queratinocitos/fisiología , Epidermis , Inflamación/genética , Vía de Señalización Wnt , Ratones Noqueados
16.
Front Cell Dev Biol ; 11: 1073805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36861039

RESUMEN

Epidermal keratinocytes are enriched with at least nine connexins that are key regulators of epidermal homeostasis. The role of Cx30.3 in keratinocytes and epidermal health became evident when fourteen autosomal dominant mutations in the Cx30.3-encoding GJB4 gene were linked to a rare and incurable skin disorder called erythrokeratodermia variabilis et progressiva (EKVP). While these variants are linked to EKVP, they remain largely uncharacterized hindering therapeutic options. In this study, we characterize the expression and functional status of three EKVP-linked Cx30.3 mutants (G12D, T85P, and F189Y) in tissue-relevant and differentiation-competent rat epidermal keratinocytes. We found that GFP-tagged Cx30.3 mutants were non-functional likely due to their impaired trafficking and primary entrapment within the endoplasmic reticulum (ER). However, all mutants failed to increase BiP/GRP78 levels suggesting they were not inducing an unfolded protein response. FLAG-tagged Cx30.3 mutants were also trafficking impaired yet occasionally exhibited some capacity to assemble into gap junctions. The pathological impact of these mutants may extend beyond their trafficking deficiencies as keratinocytes expressing FLAG-tagged Cx30.3 mutants exhibited increased propidium iodide uptake in the absence of divalent cations. Attempts to rescue the delivery of trafficking impaired GFP-tagged Cx30.3 mutants into gap junctions by chemical chaperone treatment were ineffective. However, co-expression of wild type Cx30.3 greatly enhanced the assembly of Cx30.3 mutants into gap junctions, although endogenous levels of Cx30.3 do not appear to prevent the skin pathology found in patients harboring these autosomal dominant mutations. In addition, a spectrum of connexin isoforms (Cx26, Cx30, and Cx43) exhibited the differential ability to trans-dominantly rescue the assembly of GFP-tagged Cx30.3 mutants into gap junctions suggesting a broad range of connexins found in keratinocytes may favourably interact with Cx30.3 mutants. We conclude that selective upregulation of compatible wild type connexins in keratinocytes may have potential therapeutic value in rescuing epidermal defects invoked by Cx30.3 EKVP-linked mutants.

17.
BMC Genomics ; 13: 633, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23157412

RESUMEN

BACKGROUND: The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. RESULTS: We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. CONCLUSIONS: Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions.


Asunto(s)
Análisis por Matrices de Proteínas , Proteínas/genética , Proteínas/metabolismo , ARN no Traducido/metabolismo , Proteínas del Citoesqueleto/genética , Humanos , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Estabilidad del ARN , ARN no Traducido/química , Proteínas de Unión al ARN/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/genética
18.
Mol Biol Cell ; 33(3): ar24, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985913

RESUMEN

Pannexins (PANX) are a family of three channel-forming membrane glycoproteins expressed in the skin. Previous studies have focused on the role of PANX1 and PANX3 in the regulation of cellular functions in skin cells while PANX2, the largest member of this protein family, has not been investigated. In the current study, we explored the temporal PANX2 expression in murine skin and found that one Panx2 splice variant (Panx2-202) tends to be more abundant at the protein level and is continuously expressed in developed skin. PANX2 was detected in the suprabasal layers of the mouse epidermis and up-regulated in an in vitro model of rat epidermal keratinocyte differentiation. Furthermore, we show that in apoptotic rat keratinocytes, upon UV light B (UVB)-induced caspase-3/7 activation, ectopically overexpressed PANX2 is cleaved in its C-terminal domain at the D416 residue without increasing the apoptotic rate measured by caspase-3/7 activation. Notably, CRISPR-Cas9 mediated genetic deletion of rat Panx2 delays but does not impair caspase-3/7 activation and cytotoxicity in UVB-irradiated keratinocytes. We propose that endogenous PANX2 expression in keratinocytes promotes cell death after UVB insult and may contribute to skin homeostasis.


Asunto(s)
Conexinas/metabolismo , Proteínas del Tejido Nervioso , Animales , Apoptosis , Queratinocitos/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Procesamiento Proteico-Postraduccional , Ratas , Rayos Ultravioleta
19.
Front Cardiovasc Med ; 9: 945672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990981

RESUMEN

Rationale: Myxomatous mitral valve degeneration is a common pathological manifestation of mitral valve regurgitation, with or without valvular prolapse. In addition to similarities between naturally occurring and serotonergic valve degeneration, an increasing body of evidence has recently suggested that serotonin signaling is a regulator of degenerative valvulopathies. Studies have found that serotonin can be synthesized locally by valvular cells and serotonin receptors in turn may be activated to promote signaling. Recently, telotristat ethyl (TE) has been introduced as a treatment for carcinoid disease, by selectively inhibiting tryptophan hydroxylase 1, the rate-limiting enzyme in peripheral serotonin synthesis. TE provides a unique tool to test inhibition of serotonin synthesis in vivo, without impacting brain serotonin, to further confirm the role of local serotonin synthesis on heart valves. Objective: To confirm the link between serotonin and myxomatous valvular disease in vivo. Methods and results: A hypertension-induced myxomatous mitral valve disease mouse model was employed to test the effect of TE on valvular degeneration. Circulating serotonin and local serotonin in valve tissues were tested by enzyme immunoassay and immunohistochemistry, respectively. TE was administrated in two modes: (1) parallel with angiotensin II (A2); (2) post A2 treatment. Myxomatous changes were successfully recapitulated in hypertensive mice, as determined by ECM remodeling, myofibroblast transformation, and serotonin signaling activation. These changes were at least partially reversed upon TE administration. Conclusion: This study provides the first evidence of TE as a potential therapeutic for myxomatous mitral disease, either used to prevent or reverse myxomatous degeneration.

20.
Mol Biol Cell ; 32(5): 376-390, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33405952

RESUMEN

Pannexin 1 (PANX1) is a glycoprotein that forms large pore channels capable of passing ions and metabolites such as ATP for cellular communication. PANX1 has been implicated in many diseases including breast cancer and melanoma, where inhibition or deletion of PANX1 reduced the tumorigenic and metastatic properties of the cancer cells. We interrogated the effect of single amino acid changes in various PANX1 domains using naturally occurring variants reported in cancer patient tumors. We found that a previously reported variant (Q5H) is present in cancer cells, but was not different from the wild type (Q5) in glycosylation, trafficking, or channel function and did not affect cellular properties. We discovered that the Q5H variant is in fact the highly conserved ancestral allele of PANX1 with 89% of humans carrying at least one Q5H allele. Another mutated form Y150F, found in a melanoma patient tumor, prevented phosphorylation at Y150 as well as complex N-glycosylation while increasing intracellular localization. Sarcoma (SRC) is the predicted kinase to phosphorylate the Y150 residue, and its phosphorylation is not likely to be constitutive, but rather dynamically regulated. The Y150 phosphorylation site is the first one reported to play a role in regulating posttranslational modifications and trafficking of PANX1, with potential consequences on its large-pore channel structure and function in melanoma cells.


Asunto(s)
Conexinas/genética , Conexinas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Conexinas/fisiología , Glicosilación , Células HEK293 , Humanos , Melanoma/genética , Melanoma/metabolismo , Mutación , Proteínas del Tejido Nervioso/fisiología , Fosforilación , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA