Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(48): e2312909120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983516

RESUMEN

Fire activity during 2020 to 2021 in California, USA, was unprecedented in the modern record. More than 19,000 km2 of forest vegetation burned (10× more than the historical average), potentially affecting the habitat of 508 vertebrate species. Of the >9,000 km2 that burned at high severity, 89% occurred in large patches that exceeded historical estimates of maximum high-severity patch size. In this 2-y period, 100 vertebrate species experienced fire across >10% of their geographic range, 16 of which were species of conservation concern. These 100 species experienced high-severity fire across 5 to 14% of their ranges, underscoring potentially important changes to habitat structure. Species in this region are not adapted to high-severity megafires. Management actions, such as prescribed fires and mechanical thinning, can curb severe fire behavior and reduce the potential negative impacts of uncharacteristic fires on wildlife.


Asunto(s)
Animales Salvajes , Incendios , Animales , Ecosistema , Bosques , California
2.
Ecol Appl ; 33(2): e2763, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36264047

RESUMEN

Mature forests provide important wildlife habitat and support critical ecosystem functions globally. Within the dry conifer forests of the western United States, past management and fire exclusion have contributed to forest conditions that are susceptible to increasingly severe wildfire and drought. We evaluated declines in conifer forest cover in the southern Sierra Nevada of California during a decade of record disturbance by using spatially comprehensive forest structure estimates, wildfire perimeter data, and the eDaRT forest disturbance tracking algorithm. Primarily due to the combination of wildfires, drought, and drought-associated beetle epidemics, 30% of the region's conifer forest extent transitioned to nonforest vegetation during 2011-2020. In total, 50% of mature forest habitat and 85% of high density mature forests either transitioned to lower density forest or nonforest vegetation types. California spotted owl protected activity centers (PAC) experienced greater canopy cover decline (49% of 2011 cover) than non-PAC areas (42% decline). Areas with high initial canopy cover and without tall trees were most vulnerable to canopy cover declines, likely explaining the disproportionate declines of mature forest habitat and within PACs. Drought and beetle attack caused greater cumulative declines than areas where drought and wildfire mortality overlapped, and both types of natural disturbance far outpaced declines attributable to mechanical activities. Drought mortality that disproportionately affects large conifers is particularly problematic to mature forest specialist species reliant on large trees. However, patches of degraded forests within wildfire perimeters were larger with greater core area than those outside burned areas, and remnant forest habitats were more fragmented within burned perimeters than those affected by drought and beetle mortality alone. The percentage of mature forest that survived and potentially benefited from lower severity wildfire increased over time as the total extent of mature forest declined. These areas provide some opportunity for improved resilience to future disturbances, but strategic management interventions are likely also necessary to mitigate worsening mega-disturbances. Remaining dry mature forest habitat in California may be susceptible to complete loss in the coming decades without a rapid transition from a conservation paradigm that attempts to maintain static conditions to one that manages for sustainable disturbance dynamics.


Asunto(s)
Incendios , Tracheophyta , Incendios Forestales , Ecosistema , Bosques , Árboles
3.
Conserv Biol ; 36(3): e13872, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34856018

RESUMEN

International demand for wood and other forest products continues to grow rapidly, and uncertainties remain about how animal communities will respond to intensifying resource extraction associated with woody bioenergy production. We examined changes in alpha and beta diversity of bats, bees, birds, and reptiles across wood production landscapes in the southeastern United States, a biodiversity hotspot that is one of the principal sources of woody biomass globally. We sampled across a spatial gradient of paired forest land-uses (representing pre and postharvest) that allowed us to evaluate biological community changes resulting from several types of biomass harvest. Short-rotation practices and residue removal following clearcuts were associated with reduced alpha diversity (-14.1 and -13.9 species, respectively) and lower beta diversity (i.e., Jaccard dissimilarity) between land-use pairs (0.46 and 0.50, respectively), whereas midrotation thinning increased alpha (+3.5 species) and beta diversity (0.59). Over the course of a stand rotation in a single location, biomass harvesting generally led to less biodiversity. Cross-taxa responses to resource extraction were poorly predicted by alpha diversity: correlations in responses between taxonomic groups were highly variable (-0.2 to 0.4) with large uncertainties. In contrast, beta diversity patterns were highly consistent and predictable across taxa, where correlations in responses between taxonomic groups were all positive (0.05-0.4) with more narrow uncertainties. Beta diversity may, therefore, be a more reliable and information-rich indicator than alpha diversity in understanding animal community response to landscape change. Patterns in beta diversity were primarily driven by turnover instead of species loss or gain, indicating that wood extraction generates habitats that support different biological communities.


Conservación de la Diversidad Alfa y Beta en Paisajes de Producción Maderera Resumen La demanda internacional de madera y otros productos forestales sigue creciendo rápidamente mientras permanecen las incertidumbres sobre cómo responderán las comunidades animales a la intensificación de la extracción de recursos asociada con la producción de bioenergía leñosa. Examinamos los cambios en la diversidad alfa y beta de murciélagos, abejas, aves y reptiles en los paisajes de producción maderera en el sureste de los Estados Unidos, un punto caliente de biodiversidad y una de las fuentes principales de biomasa leñosa a nivel mundial. Muestreamos a lo largo de un gradiente espacial de usos de suelo forestales emparejados (representando la pre- y postcosecha) que nos permitió evaluar los cambios en las comunidades biológicas resultantes de varios tipos de recolección de biomasa. Las prácticas de corta rotación y de eliminación de residuos después de la tala estuvieron asociadas con la reducción de la diversidad alfa (−14.1 y −13.9 especies, respectivamente) y una diversidad beta más baja (es decir, diferencia de Jaccard) entre los pares de uso de suelo (0.46 y 0.50, respectivamente), mientras que el raleo de rotación media incrementó la diversidad alfa (+3.5 especies) y beta (0.59). Durante la duración de una rotación permanente en una sola ubicación, la cosecha de biomasa generalmente derivó en menos biodiversidad. La respuesta de los taxones a la extracción de recursos estuvo muy mal pronosticada por la diversidad alfa: la correlación de las respuestas entre los grupos taxonómicos fue altamente variable (−0.2 a 0.4) con muchas incertidumbres. Como contraste, los patrones de diversidad beta fueron fuertemente coherentes y predecibles en todos los taxones, mientras que la correlación de las respuestas entre los grupos taxonómicos siempre fue positiva (0.05 a 0.4) con incertidumbres más limitadas. Por lo tanto, la diversidad beta puede ser un indicador más confiable y rico en información que la diversidad alfa para entender las respuestas de la comunidad animal a los cambios en el paisaje. Los patrones de la diversidad beta estuvieron impulsados principalmente por la rotación en lugar de la pérdida o ganancia de especies, lo que indica que la extracción de madera genera hábitats que mantienen a diferentes comunidades biológicas.


Asunto(s)
Conservación de los Recursos Naturales , Madera , Animales , Biodiversidad , Ecosistema , Bosques
4.
Ecol Appl ; 30(7): e02155, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32358982

RESUMEN

Human demand for food, fiber, and space is accelerating the rate of change of land cover and land use. Much of the world now consists of a matrix of natural forests, managed forests, agricultural cropland, and urbanized plots. Expansion of domestic energy production efforts in the United States is one driver predicted to influence future land-use and land management practices across large spatial scales. Favorable growing conditions make the southeastern United States an ideal location for producing a large portion of the country's renewable bioenergy. We investigated patterns of bat occurrence in two bioenergy feedstocks commonly grown in this region (corn, Zea mays, and pine, Pinus taeda and P. elliottii). We also evaluated potential impacts of the three major pathways of woody biomass extraction (residue removal following clearcut harvest, short-rotation energy plantations, and mid-rotation forest thinning) to bat occurrence through a priori land-use contrasts. We acoustically sampled bat vocalizations at 84 sites in the Southeastern Plains and Southern Coastal Plains of the southeastern United States across three years. We found that mid-rotation thinning resulted in positive effects on bat occurrence, and potential conversion of unmanaged (reference) forest to managed forest for timber and/or bioenergy harvest resulted in negative effects on bat occurrence when effects were averaged across all species. The effects of short-rotation energy plantations, removal of logging residues from plantation clearcuts, and corn were equivocal for all bat species examined. Our results suggest that accelerated production of biomass for energy production through either corn or intensively managed pine forests is not likely to have an adverse effect on bat communities, so long as existing older unmanaged forests are not converted to managed bioenergy or timber plantations. Beyond bioenergy crop production, mid-rotation thinning of even-aged pine stands intended for timber production, increases to the duration of plantation rotations to promote older forest stands, arranging forest stands and crop fields to maximize edge habitat, and maintaining unmanaged forests could benefit bat communities by augmenting roosting and foraging opportunities.


Asunto(s)
Quirópteros , Animales , Biomasa , Ecosistema , Bosques , Humanos , Sudeste de Estados Unidos
5.
Trends Ecol Evol ; 38(11): 1072-1084, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37479555

RESUMEN

Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa, and linking fire-adapted phenotypes to their underlying genetic basis. A better understanding of evolutionary responses to fire has the potential to positively influence conservation strategies that embrace evolutionary resilience to fire in the Pyrocene.

6.
PLoS One ; 17(3): e0265175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298506

RESUMEN

Accessibility of multispectral, multitemporal imagery combined with recent advances in cloud computing and machine learning approaches have enhanced our ability to model habitat characteristics across broad spatial and temporal scales. We integrated a large dataset of known nest and roost sites of a threatened species, the Mexican spotted owl (Strix occidentalis lucida), in the southwestern USA with Landsat imagery processed using the Continuous Change Detection and Classification (CCDC) time series algorithm on Google Earth Engine. We then used maximum entropy modeling (Maxent) to classify the landscape into four 'spectral similarity' classes that reflected the degree to which 30-m pixels contained a multispectral signature similar to that found at known owl nest/roost sites and mapped spectral similarity classes from 1986-2020. For map interpretation, we used nationally consistent forest inventory data to evaluate the structural and compositional characteristics of each spectral similarity class. We found a monotonic increase of structural characteristics typically associated with owl nesting and roosting over classes of increasing similarity, with the 'very similar' class meeting or exceeding published minimum desired management conditions for owl nesting and roosting. We also found an increased rate of loss of forest vegetation typical of owl nesting and roosting since the beginning of the 21st century that can be partly attributed to increased frequency and extent of large (≥400 ha) wildfires. This loss resulted in a 38% reduction over the 35-year study period in forest vegetation most similar to that used for owl nesting and roosting. Our modelling approach using cloud computing with time series of Landsat imagery provided a cost-effective tool for landscape-scale, multidecadal monitoring of vegetative components of a threatened species' habitat. Our approach could be used to monitor trends in the vegetation favored by any other species, provided that high-quality location data such as we presented here are available.


Asunto(s)
Especies en Peligro de Extinción , Estrigiformes , Animales , Conservación de los Recursos Naturales/métodos , Ecosistema , Bosques
8.
Ecol Evol ; 5(24): 5810-22, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26811756

RESUMEN

When possible, many species will shift in elevation or latitude in response to rising temperatures. However, before such shifts occur, individuals will first tolerate environmental change and then modify their behavior to maintain heat balance. Behavioral thermoregulation allows animals a range of climatic tolerances and makes predicting geographic responses under future warming scenarios challenging. Because behavioral modification may reduce an individual's fecundity by, for example, limiting foraging time and thus caloric intake, we must consider the range of behavioral options available for thermoregulation to accurately predict climate change impacts on individual species. To date, few studies have identified mechanistic links between an organism's daily activities and the need to thermoregulate. We used a biophysical model, Niche Mapper, to mechanistically model microclimate conditions and thermoregulatory behavior for a temperature-sensitive mammal, the American pika (Ochotona princeps). Niche Mapper accurately simulated microclimate conditions, as well as empirical metabolic chamber data for a range of fur properties, animal sizes, and environmental parameters. Niche Mapper predicted pikas would be behaviorally constrained because of the need to thermoregulate during the hottest times of the day. We also showed that pikas at low elevations could receive energetic benefits by being smaller in size and maintaining summer pelage during longer stretches of the active season under a future warming scenario. We observed pika behavior for 288 h in Glacier National Park, Montana, and thermally characterized their rocky, montane environment. We found that pikas were most active when temperatures were cooler, and at sites characterized by high elevations and north-facing slopes. Pikas became significantly less active across a suite of behaviors in the field when temperatures surpassed 20°C, which supported a metabolic threshold predicted by Niche Mapper. In general, mechanistic predictions and empirical observations were congruent. This research is unique in providing both an empirical and mechanistic description of the effects of temperature on a mammalian sentinel of climate change, the American pika. Our results suggest that previously underinvestigated characteristics, specifically fur properties and body size, may play critical roles in pika populations' response to climate change. We also demonstrate the potential importance of considering behavioral thermoregulation and microclimate variability when predicting animal responses to climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA