Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35999052

RESUMEN

Motor units convert the last neural code of movement into muscle forces. The classic view of motor unit control is that the central nervous system sends common synaptic inputs to motoneuron pools and that motoneurons respond in an orderly fashion dictated by the size principle. This view however is in contrast with the large number of dimensions observed in motor cortex which may allow individual and flexible control of motor units. Evidence for flexible control of motor units may be obtained by tracking motor units longitudinally during tasks with some level of behavioural variability. Here we identified and tracked populations of motor units in the brachioradialis muscle of two macaque monkeys during ten sessions spanning over one month with a broad range of rate of force development (1.8 - 38.6 N·m·s-1). We found a very stable recruitment order and discharge characteristics of the motor units over sessions and contraction trials. The small deviations from orderly recruitment were fully predicted by the motor unit recruitment intervals, so that small shifts in recruitment thresholds happened only during contractions at high rate of force development. Moreover, we also found that one component explained more than ∼50% of the motor unit discharge rate variance, and that the remaining components represented a time-shifted version of the first. In conclusion, our results show that motoneurons recruitment is determined by the interplay of the size principle and common input and that this recruitment scheme is not violated over time nor by the speed of the contractions.SIGNIFICANCE STATEMENT:With a new non-invasive high-density electromyographic framework we show the activity of motor unit ensembles in macaques during voluntary contractions. The discharge characteristics of brachioradialis motor units revealed a relatively fixed recruitment order and discharge characteristics across days and rate of force developments. These results were further confirmed through invasive axonal stimulation and recordings of intramuscular electromyographic activity from 16 arm muscles. The study shows for the first time the feasibility of longitudinal non-invasive motor unit interfacing and tracking of the same motor units in non-human primates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA