Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(21): 2145-2151, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38364110

RESUMEN

ABSTRACT: Voxelotor is an inhibitor of sickle hemoglobin polymerization that is used to treat sickle cell disease. Although voxelotor has been shown to improve anemia, the clinical benefit on the brain remains to be determined. This study quantified the cerebral hemodynamic effects of voxelotor in children with sickle cell anemia (SCA) using noninvasive diffuse optical spectroscopies. Specifically, frequency-domain near-infrared spectroscopy combined with diffuse correlation spectroscopy were used to noninvasively assess regional oxygen extraction fraction (OEF), cerebral blood volume, and an index of cerebral blood flow (CBFi). Estimates of CBFi were first validated against arterial spin-labeled magnetic resonance imaging (ASL-MRI) in 8 children with SCA aged 8 to 18 years. CBFi was significantly positively correlated with ASL-MRI-measured blood flow (R2 = 0.651; P = .015). Next, a single-center, open-label pilot study was completed in 8 children with SCA aged 4 to 17 years on voxelotor, monitored before treatment initiation and at 4, 8, and 12 weeks (NCT05018728). By 4 weeks, both OEF and CBFi significantly decreased, and these decreases persisted to 12 weeks (both P < .05). Decreases in CBFi were significantly correlated with increases in blood hemoglobin (Hb) concentration (P = .025), whereas the correlation between decreases in OEF and increases in Hb trended toward significance (P = .12). Given that previous work has shown that oxygen extraction and blood flow are elevated in pediatric SCA compared with controls, these results suggest that voxelotor may reduce cerebral hemodynamic impairments. This trial was registered at www.ClinicalTrials.gov as #NCT05018728.


Asunto(s)
Anemia de Células Falciformes , Circulación Cerebrovascular , Oxígeno , Humanos , Anemia de Células Falciformes/sangre , Niño , Adolescente , Masculino , Femenino , Oxígeno/sangre , Oxígeno/metabolismo , Preescolar , Imagen por Resonancia Magnética/métodos , Pirazinas/uso terapéutico , Pirazinas/administración & dosificación , Proyectos Piloto , Benzaldehídos/uso terapéutico , Benzaldehídos/farmacología , Benzaldehídos/administración & dosificación , Espectroscopía Infrarroja Corta/métodos , Pirazoles
2.
J Am Chem Soc ; 146(11): 7763-7770, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456418

RESUMEN

Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.

3.
Small ; : e2311109, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597752

RESUMEN

Controlling the nanomorphology in bulk heterojunction photoactive blends is crucial for optimizing the performance and stability of organic photovoltaic (OPV) technologies. A promising approach is to alter the drying dynamics and consequently, the nanostructure of the blend film using solvent additives such as 1,8-diiodooctane (DIO). Although this approach is demonstrated extensively for OPV systems incorporating fullerene-based acceptors, it is unclear how solvent additive processing influences the morphology and stability of nonfullerene acceptor (NFA) systems. Here, small angle neutron scattering (SANS) is used to probe the nanomorphology of two model OPV systems processed with DIO: a fullerene-based system (PBDB-T:PC71BM) and an NFA-based system (PBDB-T:ITIC). To overcome the low intrinsic neutron scattering length density contrast in polymer:NFA blend films, the synthesis of a deuterated NFA analog (ITIC-d52) is reported. Using SANS, new insights into the nanoscale evolution of fullerene and NFA-based systems are provided by characterizing films immediately after fabrication, after thermal annealing, and after aging for 1 year. It is found that DIO processing influences fullerene and NFA-based systems differently with NFA-based systems characterized by more phase-separated domains. After long-term aging, SANS reveals both systems demonstrate some level of thermodynamic induced domain coarsening.

4.
Nat Mater ; 21(5): 533-539, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35256791

RESUMEN

Quantum dot (QD) solids are an emerging platform for developing a range of optoelectronic devices. Thus, understanding exciton dynamics is essential towards developing and optimizing QD devices. Here, using transient absorption microscopy, we reveal the initial exciton dynamics in QDs with femtosecond timescales. We observe high exciton diffusivity (~102 cm2 s-1) in lead chalcogenide QDs within the first few hundred femtoseconds after photoexcitation followed by a transition to a slower regime (~10-1-1 cm2 s-1). QD solids with larger interdot distances exhibit higher initial diffusivity and a delayed transition to the slower regime, while higher QD packing density and heterogeneity accelerate this transition. The fast transport regime occurs only in materials with exciton Bohr radii much larger than the QD sizes, suggesting the transport of delocalized excitons in this regime and a transition to slower transport governed by exciton localization. These findings suggest routes to control the optoelectronic properties of QD solids.


Asunto(s)
Puntos Cuánticos , Compuestos de Selenio
5.
Langmuir ; 39(13): 4799-4808, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36940205

RESUMEN

Controlling the dispersibility of nanocrystalline inorganic quantum dots (QDs) within organic semiconductor (OSC):QD nanocomposite films is critical for a wide range of optoelectronic devices. This work demonstrates how small changes to the OSC host molecule can have a dramatic detrimental effect on QD dispersibility within the host organic semiconductor matrix as quantified by grazing incidence X-ray scattering. It is commonplace to modify QD surface chemistry to enhance QD dispersibility within an OSC host. Here, an alternative route toward optimizing QD dispersibilities is demonstrated, which dramatically improves QD dispersibilities through blending two different OSCs to form a fully mixed OSC matrix phase.

6.
Cleft Palate Craniofac J ; 59(12): 1469-1476, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34569298

RESUMEN

Sphincter pharyngoplasty is a surgical method to treat velopharyngeal dysfunction. However, surgical failure is often noted and postoperative assessment frequently reveals low-set pharyngoplasties. Past studies have not quantified pharyngoplasty tissue changes that occur postoperatively and gaps remain related to the patient-specific variables that influence postoperative change. The purpose of this study was to utilize advanced three-dimensional imaging and volumetric magnetic resonance imaging (MRI) data to visualize and quantify pharyngoplasty insertion site and postsurgical tissue changes over time.A prospective, repeated measures design was used for the assessment of craniometric and velopharyngeal variables postsurgically. Imaging was completed across two postoperative time points. Tissue migration, pharyngoplasty dimensions, and predictors of change were analyzed across imaging time points.Significant differences were present between the initial location of pharyngoplasty tissue and the pharyngoplasty location 2 to 4 months postoperatively. The average postoperative inferior movement of pharyngoplasty tissue was 6.82 mm, although notable variability was present across participants. The pharyngoplasty volume decreased by 30%, on average.Inferior migration of the pharyngoplasty tissue was present in all patients. Gravity, scar contracture, and patient-specific variables likely interact, impacting final postoperative pharyngoplasty location. The use of advanced imaging modalities, such as 3D MRI, allows for the quantification and visualization of tissue change. There is a need for continued identification of patient-specific factors that may impact the amount of inferior tissue migration and scar contracture postoperatively.


Asunto(s)
Fisura del Paladar , Contractura , Insuficiencia Velofaríngea , Humanos , Insuficiencia Velofaríngea/diagnóstico por imagen , Insuficiencia Velofaríngea/cirugía , Estudios Prospectivos , Cicatriz , Habla , Resultado del Tratamiento , Faringe/diagnóstico por imagen , Faringe/cirugía , Imagen por Resonancia Magnética , Fisura del Paladar/diagnóstico por imagen , Fisura del Paladar/cirugía , Estudios Retrospectivos
7.
Inorganica Chim Acta ; 5172021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33568836

RESUMEN

Three new coinage metal carbene complexes of silver and gold were synthesized from a thiamine inspired proligand. The compounds were characterized by HRMS, NMR spectroscopy (1H, 19F, 31P and 13C), FT-IR and elemental analysis. The coordination environment around the metal centers was correlated to the diffusion coefficients obtained from DOSY-NMR experiments and was in agreement with the nuclearity observed in the solid-state by single crystal X-ray crystallography. The silver and gold carbene compounds were subjected to MIC studies against a panel of pathogenic bacteria, including multidrug resistant strains, with the gold carbene derivative showing the most potent antimicrobial activity against Gram-positive methicillin resistant Staphylococcus aureus (MRSA).

8.
Molecules ; 26(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299563

RESUMEN

A new terthiophene-based imidazole luminophore 5,5'-(1H-thieno[3,4-d]imidazole-4,6-diyl)bis(thiophene-2-carboxylic acid) (TIBTCH2, 5) was synthesized in one step from previously reported 4,6-di(thiophen-2-yl)-1H-thieno[3,4-d]imidazole (DTTI, 4), and their photophysical properties were studied and compared accordingly. Under solvothermal conditions, reacting 5 with Mn(OAc)2 yielded a new three-dimensional metal-organic framework (MOF, 6) which was structurally defined by single-crystal X-ray diffraction. In 6, all Mn(II) ions octahedrally bind to carboxylate-O atoms to form a linear Mn3 secondary building unit (SBU) that contains three distinct coordination modes. Importantly, 6 exhibits dual functional properties of ligand-based emission and metal-based magnetic behaviors.

9.
Soft Matter ; 16(34): 7970-7981, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32766663

RESUMEN

Nanocrystal quantum dots (QD) functionalised with active organic ligands hold significant promise as solar energy conversion materials, capable of multiexcitonic processes that could improve the efficiencies of single-junction photovoltaic devices. Small-angle X-ray and neutron scattering (SAXS and SANS) were used to characterize the structure of lead sulphide QDs post ligand-exchange with model acene-carboxylic acid ligands (benzoic acid, hydrocinnamic acid and naphthoic acid). Results demonstrate that hydrocinnamic acid and naphthoic acid ligated QDs form monolayer ligand shells, whilst benzoic acid ligated QDs possess ligand shells thicker than a monolayer. Further, the formation of a range of nanocomposite materials through the self-assembly of such acene-ligated QDs with an organic small-molecule semiconductor [5,12-bis((triisopropylsilyl)ethynyl)tetracene (TIPS-Tc)] is investigated. These materials are representative of a wider set of functional solar energy materials; here the focus is on structural studies, and their optoelectronic function is not investigated. As TIPS-Tc concentrations are increased, approaching the solubility limit, SANS data show that QD fractal-like features form, with structures possibly consistent with a diffusion limited aggregation mechanism. These, it is likely, act as heterogeneous nucleation agents for TIPS-Tc crystallization, generating agglomerates containing both QDs and TIPS-Tc. Within the TIPS-Tc crystals there seem to be three distinct QD morphologies: (i) at the crystallite centre (fractal-like QD aggregates acting as nucleating agents), (ii) trapped within the growing crystallite (giving rise to QD features ordered as sticky hard spheres), and (iii) a population of aggregate QDs at the periphery of the crystalline interface that were expelled from the growing TIPS-Tc crystal. Exposure of the QD:TIPS-Tc crystals to DMF vapour, a solvent known to be able to strip ligands from QDs, alters the spacing between PbS-hydrocinnamic acid and PbS-naphthoic acid ligated QD aggregate features. In contrast, for PbS-benzoic acid ligated QDs, DMF vapour exposure promotes the formation of ordered QD colloidal crystal type phases. This work thus demonstrates how different QD ligand chemistries control the interactions between QDs and an organic small molecule, leading to widely differing self-assembly processes. It highlights the unique capabilities of multiscale X-ray and neutron scattering in characterising such composite materials.

10.
Inorg Chem ; 59(19): 14620-14626, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32951426

RESUMEN

One 14-metal Yb(III) nanoring [Yb14(HL)2L20(DMF)8(H2O)8] (1) with a size of about 1.1 × 2.5 × 2.7 nm was synthesized from a tridentate ligand. Under the excitation of ligand absorption bands, 1 exhibits the NIR luminescence of Yb(III) and displays high luminescence sensitivity and selectivity to Co(II), Cu(II), and 2,4,6-trinitrophenol (PA) at the parts per million level. The KSV values of 1 to Co(II), Cu(II), and PA are 6.0 × 104 M-1, 3.8 × 104 M-1, and 6.9 × 104 M-1, respectively. 1 exhibits high luminescent sensitivity to PA even in the presence of other explosives.

11.
Inorg Chem ; 59(13): 8652-8656, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32564592

RESUMEN

One Nd(III) complex [Nd3L3(OAc)3] (1) was synthesized from a conjugate Schiff base ligand H2L. It shows a chiral "triple-decker" structure (1.1 × 1.2 × 1.8 nm) with Nd(III) ions sandwiched between the Schiff base ligands. 1 exhibits NIR Nd(III) luminescence, and the LMET efficiency is calculated to be 13.8%. It displays high luminescence sensitivity and selectivity to Co(II). The KSV value and LOD of 1 to Co(II) are 9.96 × 104 M-1 and 0.97 µM, respectively.

12.
J Neuroinflammation ; 16(1): 275, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882005

RESUMEN

BACKGROUND: Neuroinflammation, typified by elevated levels of interleukin-1 (IL-1) α and ß, and deficits in proteostasis, characterized by accumulation of polyubiquitinated proteins and other aggregates, are associated with neurodegenerative disease independently and through interactions of the two phenomena. We investigated the influence of IL-1ß on ubiquitination via its impact on activation of the E3 ligase parkin by either phosphorylated ubiquitin (P-Ub) or NEDD8. METHODS: Immunohistochemistry and Proximity Ligation Assay were used to assess colocalization of parkin with P-tau or NEDD8 in hippocampus from Alzheimer patients (AD) and controls. IL-1ß effects on PINK1, P-Ub, parkin, P-parkin, and GSK3ß-as well as phosphorylation of parkin by GSK3ß-were assessed in cell cultures by western immunoblot, using two inhibitors and siRNA knockdown to suppress GSK3ß. Computer modeling characterized the binding and the effects of P-Ub and NEDD8 on parkin. IL-1α, IL-1ß, and parkin gene expression was assessed by RT-PCR in brains of 2- and 17-month-old PD-APP mice and wild-type littermates. RESULTS: IL-1α, IL-1ß, and parkin mRNA levels were higher in PD-APP mice compared with wild-type littermates, and IL-1α-laden glia surrounded parkin- and P-tau-laden neurons in human AD. Such neurons showed a nuclear-to-cytoplasmic translocation of NEDD8 that was mimicked in IL-1ß-treated primary neuronal cultures. These cultures also showed higher parkin levels and GSK3ß-induced parkin phosphorylation; PINK1 levels were suppressed. In silico simulation predicted that binding of either P-Ub or NEDD8 at a singular position on parkin opens the UBL domain, exposing Ser65 for parkin activation. CONCLUSIONS: The promotion of parkin- and NEDD8-mediated ubiquitination by IL-1ß is consistent with an acute neuroprotective role. However, accumulations of P-tau and P-Ub and other elements of proteostasis, such as translocated NEDD8, in AD and in response to IL-1ß suggest either over-stimulation or a proteostatic failure that may result from chronic IL-1ß elevation, easily envisioned considering its early induction in Down's syndrome and mild cognitive impairment. The findings further link autophagy and neuroinflammation, two important aspects of AD pathogenesis, which have previously been only loosely related.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Interleucina-1beta/metabolismo , Proteína NEDD8/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Anciano , Animales , Activación Enzimática/fisiología , Femenino , Humanos , Masculino , Ratones , Modelos Moleculares , Transporte de Proteínas/fisiología , Ratas Sprague-Dawley , Ubiquitina/metabolismo
13.
J Int Neuropsychol Soc ; 24(8): 781-792, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30139405

RESUMEN

OBJECTIVES: The aim of this study was to investigate alterations in functional connectivity, white matter integrity, and cognitive abilities due to sports-related concussion (SRC) in adolescents using a prospective longitudinal design. METHODS: We assessed male high school football players (ages 14-18) with (n=16) and without (n=12) SRC using complementary resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI) along with cognitive performance using the Immediate Post-Concussive Assessment and Cognitive Testing (ImPACT). We assessed both changes at the acute phase (<7 days post-SRC) and at 21 days later, as well as, differences between athletes with SRC and age- and team-matched control athletes. RESULTS: The results revealed rs-fMRI hyperconnectivity within posterior brain regions (e.g., precuneus and cerebellum), and hypoconnectivity in more anterior areas (e.g., inferior and middle frontal gyri) when comparing SRC group to control group acutely. Performance on the ImPACT (visual/verbal memory composites) was correlated with resting state network connectivity at both time points. DTI results revealed altered diffusion in the SRC group along a segment of the corticospinal tract and the superior longitudinal fasciculus in the acute phase of SRC. No differences between the SRC group and control group were seen at follow-up imaging. CONCLUSIONS: Acute effects of SRC are associated with both hyperconnectivity and hypoconnectivity, with disruption of white matter integrity. In addition, acute memory performance was most sensitive to these changes. After 21 days, adolescents with SRC returned to baseline performance, although chronic hyperconnectivity of these regions could place these adolescents at greater risk for secondary neuropathological changes, necessitating future follow-up. (JINS, 2018, 24, 781-792).


Asunto(s)
Traumatismos en Atletas/diagnóstico por imagen , Conmoción Encefálica/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adolescente , Atletas , Traumatismos en Atletas/fisiopatología , Traumatismos en Atletas/psicología , Conmoción Encefálica/fisiopatología , Conmoción Encefálica/psicología , Imagen de Difusión Tensora , Fútbol Americano , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Memoria , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Síndrome Posconmocional/diagnóstico por imagen , Síndrome Posconmocional/fisiopatología , Síndrome Posconmocional/psicología , Estudios Prospectivos , Desempeño Psicomotor , Sustancia Blanca/fisiopatología
14.
Alzheimers Dement ; 14(2): 230-242, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28945989

RESUMEN

INTRODUCTION: Alzheimer apolipoprotein E (APOE) ɛ4/ɛ4 carriers have earlier disease onset and more protein aggregates than patients with other APOE genotypes. Autophagy opposes aggregation, and important autophagy genes are coordinately regulated by transcription factor EB (TFEB) binding to "coordinated lysosomal expression and regulation" (CLEAR) DNA motifs. METHODS: Autophagic gene expression was assessed in brains of controls and Alzheimer's disease (AD) patients parsed by APOE genotype and in a glioblastoma cell line expressing either apoE3 or apoE4. Computational modeling assessed interactions between apoE and mutated apoE with CLEAR or modified DNA. RESULTS: Three TFEB-regulated mRNA transcripts-SQSTM, MAP1LC3B, and LAMP2-were lower in AD ɛ4/ɛ4 than in AD ɛ3/ɛ3 brains. Computational modeling predicted avid specific binding of apoE4 to CLEAR motifs. ApoE was found in cellular nuclei, and in vitro binding assays suggest competition between apoE4 and TFEB at CLEAR sites. CONCLUSION: ApoE4-CLEAR interactions may account for suppressed autophagy in APOE ɛ4/ɛ4 carriers and, in this way, contribute to earlier AD onset.


Asunto(s)
Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Autofagia/genética , Encéfalo/metabolismo , Lisosomas/metabolismo , Motivos de Nucleótidos/genética , Enfermedad de Alzheimer/genética , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Transformada , Simulación por Computador , Citocinas/metabolismo , Progresión de la Enfermedad , Ensayo de Cambio de Movilidad Electroforética , Epistasis Genética/genética , Femenino , Genotipo , Humanos , Lisosomas/patología , Masculino , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica/genética , ARN Mensajero/metabolismo
15.
Macromol Rapid Commun ; 38(21)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945923

RESUMEN

A polymer consisting of a polynorbornene backbone with perylene diimide (PDI) pendant groups on each monomeric unit is synthesized via ring opening metathesis polymerization. The PDI pendant groups along the polymer backbone, studied by UV-vis absorption, fluorescence emission, and electron paramagnetic resonance spectroscopy in addition to electrochemical methods, show evidence of molecular aggregation and corresponding electronic coupling with neighboring groups, which forms pathways for efficient electron transport from one group to another in a specific reduced form. When n-doped, the title polymer shows redox conductivity of 5.4 × 10-3 S cm-1 , comparable with crystalline PDI materials, and is therefore a promising material for use in organic electronics.


Asunto(s)
Electrónica , Electrones , Imidas/química , Perileno/análogos & derivados , Plásticos/química , Electroquímica , Electrodos , Espectroscopía de Resonancia por Spin del Electrón , Imidas/síntesis química , Luz , Perileno/síntesis química , Perileno/química , Plásticos/síntesis química , Polimerizacion , Espectrofotometría Ultravioleta
16.
J Proteome Res ; 15(2): 563-71, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26696396

RESUMEN

Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.


Asunto(s)
Óxidos N-Cíclicos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Animales , Antioxidantes/farmacología , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Cromatografía de Gases y Espectrometría de Masas , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metaboloma/genética , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Marcadores de Spin
17.
Faraday Discuss ; 191: 465-479, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27430046

RESUMEN

We have developed a new class of lanthanide nano-clusters that self-assemble using flexible Schiff base ligands. Cd-Ln and Ni-Ln clusters, [Ln8Cd24(L1)12(OAc)39Cl7(OH)2] (Ln = Nd, Eu), [Eu8Cd24(L1)12(OAc)44], [Ln8Cd24(L2)12(OAc)44] (Ln = Nd, Yb, Sm) and [Nd2Ni4(L3)2(acac)6(NO3)2(OH)2], were constructed using different types of flexible Schiff base ligands. These molecular nano-clusters exhibit anisotropic architectures that differ considerably depending upon the presence of Cd (nano-drum) or Ni (square-like nano-cluster). Structural characterization of the self-assembled particles has been undertaken using crystallography, transmission electron microscopy and small-angle X-ray scattering. Comparison of the metric dimensions of the nano-drums shows a consistency of size using these techniques, suggesting that these molecules may share similar structural features in both solid and solution states. Photophysical properties were studied by excitation of the ligand-centered absorption bands in the solid state and in solution, and using confocal microscopy of microspheres loaded with the compounds. The emissive properties of these compounds vary depending upon the combination of lanthanide and Cd or Ni present in these clusters. The results provide new insights into the construction of novel high-nuclearity nano-clusters and offer a promising foundation for the development of new functional nanomaterials.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanoestructuras , Bases de Schiff , Ligandos , Compuestos Organometálicos
18.
J Pediatr Hematol Oncol ; 38(7): e263-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27571120

RESUMEN

Identifying neuroblastoma (NBL) metastases is crucial to treatment and prognosis. Metaiodobenzylguanidine and Tc99M bone scans are standard for identifying bony metastases but can underestimate disease. Diffusion-weighted imaging (DWI) of the spine has shown promise in evaluating bony metastases but has been limited by artifacts. Readout-segmented echo planar imaging is a technique for DWI that minimizes artifacts allowing for improved identification of spinal disease. This report illustrates the utility of DWI of the spine using readout-segmented echo planar imaging in the detection of bony NBL metastases in a child, lending support that DWI should be included in magnetic resonance imaging scans for NBL.


Asunto(s)
Neoplasias Óseas/secundario , Imagen Eco-Planar/métodos , Neuroblastoma/diagnóstico por imagen , Columna Vertebral/diagnóstico por imagen , 3-Yodobencilguanidina , Preescolar , Humanos , Masculino , Neuroblastoma/patología
19.
Eur Phys J E Soft Matter ; 38(3): 14, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25743024

RESUMEN

The mode of lysozyme protein adsorption at end-tethered thiol-terminated polyethylene oxide brushes grafted upon gold was determined in situ by neutron reflectivity using the INTER instrument at target station 2, ISIS, RAL, UK. It was found that the most probable position of protein adsorption at these weakly protein resistive brushes was at the gold-brush interface in the so-called primary protein position.


Asunto(s)
Oro/química , Muramidasa/química , Polietilenglicoles/química , Adsorción , Difracción de Neutrones
20.
Hum Brain Mapp ; 35(12): 5996-6010, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25082062

RESUMEN

This study introduces a new approach for assessing the effects of pediatric epilepsy on a language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI. An auditory word definition decision task paradigm was used to activate the language network for 29 patients and 30 controls. Evaluations illustrated that pediatric epilepsy is associated with a network efficiency reduction. Patients showed a propensity to inefficiently use the whole brain network to perform the language task; whereas, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was performed. The analysis revealed substantial global network feature differences between the patients and controls for the extent of activation network. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient's extent of activation network showed a tendency toward randomness. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. We finally showed that a clustering scheme was able to fairly separate the subjects into their respective patient or control groups. The clustering was initiated using local and global nodal measurements. Compared to the intensity of activation network, the extent of activation network clustering demonstrated better precision. This ascertained that the network differences presented by the networks were associated with pediatric epilepsy.


Asunto(s)
Encéfalo/fisiopatología , Conectoma , Epilepsia/fisiopatología , Lenguaje , Adolescente , Niño , Análisis por Conglomerados , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/fisiopatología , Procesamiento de Señales Asistido por Computador , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA