Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant Cell ; 35(1): 125-138, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36005926

RESUMEN

A fundamental goal in plant biology is to identify and understand the variation underlying plants' adaptation to their environment. Climate change has given new urgency to this goal, as society aims to accelerate adaptation of ecologically important plant species, endangered plant species, and crops to hotter, less predictable climates. In the pre-genomic era, identifying adaptive alleles was painstaking work, leveraging genetics, molecular biology, physiology, and ecology. Now, the rise of genomics and new computational approaches may facilitate this research. Genotype-environment associations (GEAs) use statistical associations between allele frequency and environment of origin to test the hypothesis that allelic variation at a given gene is adapted to local environments. Researchers may scan the genome for GEAs to generate hypotheses on adaptive genetic variants (environmental genome-wide association studies). Despite the rapid adoption of these methods, many important questions remain about the interpretation of GEA findings, which arise from fundamental unanswered questions on the genetic architecture of adaptation and limitations inherent to association-based analyses. We outline strategies to ground GEAs in the underlying hypotheses of genetic architecture and better test GEA-generated hypotheses using genetics and ecophysiology. We provide recommendations for new users who seek to learn about the molecular basis of adaptation. When combined with a rigorous hypothesis testing framework, GEAs may facilitate our understanding of the molecular basis of climate adaptation for plant improvement.


Asunto(s)
Adaptación Fisiológica , Interacción Gen-Ambiente , Adaptación Fisiológica/genética , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Plantas/genética
2.
Annu Rev Ecol Evol Syst ; 53(1): 87-111, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37790997

RESUMEN

Divergent selection across the landscape can favor the evolution of local adaptation in populations experiencing contrasting conditions. Local adaptation is widely observed in a diversity of taxa, yet we have a surprisingly limited understanding of the mechanisms that give rise to it. For instance, few have experimentally confirmed the biotic and abiotic variables that promote local adaptation, and fewer yet have identified the phenotypic targets of selection that mediate local adaptation. Here, we highlight critical gaps in our understanding of the process of local adaptation and discuss insights emerging from in-depth investigations of the agents of selection that drive local adaptation, the phenotypes they target, and the genetic basis of these phenotypes. We review historical and contemporary methods for assessing local adaptation, explore whether local adaptation manifests differently across life history, and evaluate constraints on local adaptation.

3.
Am J Bot ; 110(3): 1-11, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758170

RESUMEN

PREMISE: Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models. METHODS: In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. RESULTS: We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models can predict North American summer occurrences very well. CONCLUSIONS: The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.


Asunto(s)
Capsella , Capsella/genética , Estaciones del Año , América del Norte , Europa (Continente) , Ecosistema
4.
Mol Biol Evol ; 38(12): 5563-5575, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34498072

RESUMEN

Accurate estimates of genome-wide rates and fitness effects of new mutations are essential for an improved understanding of molecular evolutionary processes. Although eukaryotic genomes generally contain a large noncoding fraction, functional noncoding regions and fitness effects of mutations in such regions are still incompletely characterized. A promising approach to characterize functional noncoding regions relies on identifying accessible chromatin regions (ACRs) tightly associated with regulatory DNA. Here, we applied this approach to identify and estimate selection on ACRs in Capsella grandiflora, a crucifer species ideal for population genomic quantification of selection due to its favorable population demography. We describe a population-wide ACR distribution based on ATAC-seq data for leaf samples of 16 individuals from a natural population. We use population genomic methods to estimate fitness effects and proportions of positively selected fixations (α) in ACRs and find that intergenic ACRs harbor a considerable fraction of weakly deleterious new mutations, as well as a significantly higher proportion of strongly deleterious mutations than comparable inaccessible intergenic regions. ACRs are enriched for expression quantitative trait loci (eQTL) and depleted of transposable element insertions, as expected if intergenic ACRs are under selection because they harbor regulatory regions. By integrating empirical identification of intergenic ACRs with analyses of eQTL and population genomic analyses of selection, we demonstrate that intergenic regulatory regions are an important source of nearly neutral mutations. These results improve our understanding of selection on noncoding regions and the role of nearly neutral mutations for evolutionary processes in outcrossing Brassicaceae species.


Asunto(s)
Capsella , Capsella/genética , Cromatina/genética , Elementos Transponibles de ADN , Genoma de Planta , Humanos , Selección Genética
5.
Mol Biol Evol ; 38(9): 3567-3580, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33905497

RESUMEN

Convergent phenotypic evolution provides some of the strongest evidence for adaptation. However, the extent to which recurrent phenotypic adaptation has arisen via parallelism at the molecular level remains unresolved, as does the evolutionary origin of alleles underlying such adaptation. Here, we investigate genetic mechanisms of convergent highland adaptation in maize landrace populations and evaluate the genetic sources of recurrently selected alleles. Population branch excess statistics reveal substantial evidence of parallel adaptation at the level of individual single-nucleotide polymorphism (SNPs), genes, and pathways in four independent highland maize populations. The majority of convergently selected SNPs originated via migration from a single population, most likely in the Mesoamerican highlands, while standing variation introduced by ancient gene flow was also a contributor. Polygenic adaptation analyses of quantitative traits reveal that alleles affecting flowering time are significantly associated with elevation, indicating the flowering time pathway was targeted by highland adaptation. In addition, repeatedly selected genes were significantly enriched in the flowering time pathway, indicating their significance in adapting to highland conditions. Overall, our study system represents a promising model to study convergent evolution in plants with potential applications to crop adaptation across environmental gradients.


Asunto(s)
Aclimatación , Altitud , Zea mays , Aclimatación/genética , Alelos , Fenotipo , Zea mays/genética
6.
Proc Biol Sci ; 289(1989): 20221930, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36541172

RESUMEN

We organized this special issue to highlight new work and review recent advances at the cutting edge of 'wild quantitative genomics'. In this editorial, we will present some history of wild quantitative genetic and genomic studies, before discussing the main themes in the papers published in this special issue and highlighting the future outlook of this dynamic field.


Asunto(s)
Genoma , Genómica
7.
Mol Biol Evol ; 37(8): 2386-2393, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32321158

RESUMEN

Understanding the persistence of genetic variation within populations has long been a goal of evolutionary biology. One promising route toward achieving this goal is using population genetic approaches to describe how selection acts on the loci associated with trait variation. Gene expression provides a model trait for addressing the challenge of the maintenance of variation because it can be measured genome-wide without information about how gene expression affects traits. Previous work has shown that loci affecting the expression of nearby genes (local or cis-eQTLs) are under negative selection, but we lack a clear understanding of the selective forces acting on variants that affect the expression of genes in trans. Here, we identify loci that affect gene expression in trans using genomic and transcriptomic data from one population of the obligately outcrossing plant, Capsella grandiflora. The allele frequencies of trans-eQTLs are consistent with stronger negative selection acting on trans-eQTLs than cis-eQTLs, and stronger negative selection acting on trans-eQTLs associated with the expression of multiple genes. However, despite this general pattern, we still observe the presence of a trans-eQTL at intermediate frequency that affects the expression of a large number of genes in the same coexpression module. Overall, our work highlights the different selective pressures shaping variation in cis- and trans-regulation.


Asunto(s)
Evolución Biológica , Capsella/genética , Regulación de la Expresión Génica de las Plantas , Sitios de Carácter Cuantitativo , Selección Genética , Frecuencia de los Genes
8.
Mol Ecol ; 30(1): 30-32, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33187015

RESUMEN

Natural environments can change quickly and organisms living in these environments can either move, go extinct, or persist through rapid adaptation. Understanding the genetic and phenotypic changes that occur during rapid adaptation is crucial for predicting how populations will respond to sudden environmental changes. Since gene expression links genotype to phenotype, determining how rapid adaptation shapes the transcriptome will be useful for identifying both the traits and the genes important for adaptation, especially in cases where adaptation involves changes in quantitative traits. However, we lack a clear understanding of how rapid adaptation can cause and be caused by changes in gene expression. In this issue of Molecular Ecology, Hamann et al. (2020) investigate how gene expression has evolved during rapid adaptation to drought in two populations of the plant species Brassica rapa.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Adaptación Fisiológica/genética , Sequías , Genotipo , Fenotipo
9.
Mol Biol Evol ; 36(8): 1734-1745, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31028401

RESUMEN

Transposable elements (TEs) make up a significant portion of eukaryotic genomes and are important drivers of genome evolution. However, the extent to which TEs affect gene expression variation on a genome-wide scale in comparison with other types of variants is still unclear. We characterized TE insertion polymorphisms and their association with gene expression in 124 whole-genome sequences from a single population of Capsella grandiflora, and contrasted this with the effects of single nucleotide polymorphisms (SNPs). Population frequency of insertions was negatively correlated with distance to genes, as well as density of conserved noncoding elements, suggesting that the negative effects of TEs on gene regulation are important in limiting their abundance. Rare TE variants strongly influence gene expression variation, predominantly through downregulation. In contrast, rare SNPs contribute equally to up- and down-regulation, but have a weaker individual effect than TEs. An expression quantitative trait loci (eQTL) analysis shows that a greater proportion of common TEs are eQTLs as opposed to common SNPs, and a third of the genes with TE eQTLs do not have SNP eQTLs. In contrast with rare TE insertions, common insertions are more likely to increase expression, consistent with recent models of cis-regulatory evolution favoring enhancer alleles. Taken together, these results imply that TEs are a significant contributor to gene expression variation and are individually more likely than rare SNPs to cause extreme changes in gene expression.


Asunto(s)
Capsella/genética , Elementos Transponibles de ADN , Expresión Génica , Genoma de Planta , Selección Genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
10.
New Phytol ; 219(1): 31-36, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29574919

RESUMEN

Contents Summary 31 I. Introduction 31 II. The maintenance of genetic variation for plasticity 32 III. Why is there environmental variation for genetic effects? 33 IV. Conclusions 35 Acknowledgements 35 References 35 SUMMARY: Phenotypic plasticity is common in nature, yet we lack a comprehensive understanding of the evolutionary forces that shape genetic variation for plasticity. This endeavor is especially important because variation for plasticity will result in genotype-by-environment interactions (G × E), a crucial component of variation in quantitative traits. Here, I review our understanding of the evolutionary forces shaping G × E, focusing specifically on: what evolutionary forces maintain variation for plasticity; and what forces maintain different genetic architectures across environments. My specific goal is to show that genomic data can be leveraged to explain the maintenance of G × E by contrasting patterns of genetic variation for plasticity with neutral expectations.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Interacción Gen-Ambiente , Variación Genética , Genómica , Plantas/genética , Ambiente , Genotipo , Fenotipo
11.
Proc Natl Acad Sci U S A ; 112(50): 15390-5, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26604315

RESUMEN

The evolutionary forces that maintain genetic variation in quantitative traits within populations remain poorly understood. One hypothesis suggests that variation is under purifying selection, resulting in an excess of low-frequency variants and a negative correlation between minor allele frequency and selection coefficients. Here, we test these predictions using the genetic loci associated with total expression variation (eQTLs) and allele-specific expression variation (aseQTLs) mapped within a single population of the plant Capsella grandiflora. In addition to finding eQTLs and aseQTLs for a large fraction of genes, we show that alleles at these loci are rarer than expected and exhibit a negative correlation between phenotypic effect size and frequency. Overall, our results show that the distribution of frequencies and effect sizes of the loci responsible for local expression variation within a single outcrossing population are consistent with the effects of purifying selection.


Asunto(s)
Capsella/genética , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genoma de Planta , Selección Genética , Alelos , Composición de Base/genética , Frecuencia de los Genes/genética , Genes de Plantas , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Recombinación Genética/genética
12.
Proc Natl Acad Sci U S A ; 112(9): 2806-11, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691747

RESUMEN

Whole-genome duplication (WGD) events have occurred repeatedly during flowering plant evolution, and there is growing evidence for predictable patterns of gene retention and loss following polyploidization. Despite these important insights, the rate and processes governing the earliest stages of diploidization remain poorly understood, and the relative importance of genetic drift, positive selection, and relaxed purifying selection in the process of gene degeneration and loss is unclear. Here, we conduct whole-genome resequencing in Capsella bursa-pastoris, a recently formed tetraploid with one of the most widespread species distributions of any angiosperm. Whole-genome data provide strong support for recent hybrid origins of the tetraploid species within the past 100,000-300,000 y from two diploid progenitors in the Capsella genus. Major-effect inactivating mutations are frequent, but many were inherited from the parental species and show no evidence of being fixed by positive selection. Despite a lack of large-scale gene loss, we observe a decrease in the efficacy of natural selection genome-wide due to the combined effects of demography, selfing, and genome redundancy from WGD. Our results suggest that the earliest stages of diploidization are associated with quantitative genome-wide decreases in the strength and efficacy of selection rather than rapid gene loss, and that nonfunctionalization can receive a "head start" through a legacy of deleterious variants and differential expression originating in parental diploid populations.


Asunto(s)
Capsella/genética , Quimera/genética , Evolución Molecular , Genoma de Planta/fisiología , Poliploidía , Selección Genética , Estudio de Asociación del Genoma Completo , Mutación
13.
New Phytol ; 214(1): 21-33, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28211582

RESUMEN

Contents 21 I. 21 II. 22 III. 24 IV. 25 V. 29 30 References 30 SUMMARY: Understanding the evolutionary forces that shape genetic variation within species has long been a goal of evolutionary biology. Integrating data for the genetic architecture of traits from genome-wide association mapping studies (GWAS) along with the development of new population genetic methods for identifying selection in sequence data may allow us to evaluate the roles of mutation-selection balance and balancing selection in shaping genetic variation at various scales. Here, we review the theoretical predictions for genetic architecture and additional signals of selection on genomic sequence for the loci that affect traits. Next, we review how plant GWAS have tested for the signatures of various selective scenarios. Limited evidence to date suggests that within-population variation is maintained primarily by mutation-selection balance while variation across the landscape is the result of local adaptation. However, there are a number of inherent biases in these interpretations. We highlight these challenges and suggest ways forward to further understanding of the maintenance of variation.


Asunto(s)
Evolución Biológica , Variación Genética , Estudio de Asociación del Genoma Completo , Carácter Cuantitativo Heredable , Adaptación Fisiológica/genética , Selección Genética
14.
PLoS Genet ; 10(9): e1004622, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25255320

RESUMEN

The extent that both positive and negative selection vary across different portions of plant genomes remains poorly understood. Here, we sequence whole genomes of 13 Capsella grandiflora individuals and quantify the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we show that selection is strong in coding regions, but weak in most noncoding regions, with the exception of 5' and 3' untranslated regions (UTRs). However, estimates of selection on noncoding regions conserved across the Brassicaceae family show strong signals of selection. Additionally, we see reductions in neutral diversity around functional substitutions in both coding and conserved noncoding regions, indicating recent selective sweeps at these sites. Finally, using expression data from leaf tissue we show that genes that are more highly expressed experience stronger negative selection but comparable levels of positive selection to lowly expressed genes. Overall, we observe widespread positive and negative selection in coding and regulatory regions, but our results also suggest that both positive and negative selection on plant noncoding sequence are considerably rarer than in animal genomes.


Asunto(s)
Capsella/genética , Secuencia Conservada , Sistemas de Lectura Abierta , Selección Genética , Regiones no Traducidas , Evolución Molecular , Expresión Génica , Genoma de Planta , Estudio de Asociación del Genoma Completo , Polimorfismo Genético
15.
Mol Biol Evol ; 30(11): 2475-86, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23997108

RESUMEN

Selection on the gametophyte can be a major force shaping plant genomes as 7-11% of genes are expressed only in that phase and 60% of genes are expressed in both the gametophytic and sporophytic phases. The efficacy of selection on gametophytic tissues is likely to be influenced by sexual selection acting on male and female functions of hermaphroditic plants. Moreover, the haploid nature of the gametophytic phase allows selection to be efficient in removing recessive deleterious mutations and fixing recessive beneficial mutations. To assess the importance of gametophytic selection, we compared the strength of purifying selection and extent of positive selection on gametophyte- and sporophyte-specific genes in the highly outcrossing plant Capsella grandiflora. We found that pollen-exclusive genes had a larger fraction of sites under strong purifying selection, a greater proportion of adaptive substitutions, and faster protein evolution compared with seedling-exclusive genes. In contrast, sperm cell-exclusive genes had a smaller fraction of sites under strong purifying selection, a lower proportion of adaptive substitutions, and slower protein evolution compared with seedling-exclusive genes. Observations of strong selection acting on pollen-expressed genes are likely explained by sexual selection resulting from pollen competition aided by the haploid nature of that tissue. The relaxation of selection in sperm might be due to the reduced influence of intrasexual competition, but reduced gene expression may also be playing an important role.


Asunto(s)
Capsella/genética , Genes de Plantas , Polen/genética , Selección Genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Aptitud Genética , Genoma de Planta , Células Germinativas de las Plantas/metabolismo , Haploidia , Especificidad de Órganos , Óvulo Vegetal , Polimorfismo de Nucleótido Simple
16.
PLoS Genet ; 12(8): e1006240, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27537331
17.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38798362

RESUMEN

At the molecular level, most evolution is expected to be neutral. A key prediction of this expectation is that the level of genetic diversity in a population should scale with population size. However, as was noted by Richard Lewontin in 1974 and reaffirmed by later studies, the slope of the population size-diversity relationship in nature is much weaker than expected under neutral theory. We hypothesize that one contributor to this paradox is that current methods relying on single nucleotide polymorphisms (SNPs) called from aligning short reads to a reference genome underestimate levels of genetic diversity in many species. To test this idea, we calculated nucleotide diversity ( π ) and k-mer-based metrics of genetic diversity across 112 plant species, amounting to over 205 terabases of DNA sequencing data from 27,488 individual plants. We then compared how these different metrics correlated with proxies of population size that account for both range size and population density variation across species. We found that our population size proxies scaled anywhere from about 3 to over 20 times faster with k-mer diversity than nucleotide diversity after adjusting for evolutionary history, mating system, life cycle habit, cultivation status, and invasiveness. The relationship between k-mer diversity and population size proxies also remains significant after correcting for genome size, whereas the analogous relationship for nucleotide diversity does not. These results suggest that variation not captured by common SNP-based analyses explains part of Lewontin's paradox in plants.

18.
bioRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405842

RESUMEN

Studies into the evolution and development of leaf shape have connected variation in plant form, function, and fitness. For species with consistent leaf margin features, patterns in leaf architecture are related to both biotic and abiotic factors. However, for species with inconsistent leaf margin features, quantifying leaf shape variation and the effects of environmental factors on leaf shape has proven challenging. To investigate leaf shape variation in species with inconsistent shapes, we analyzed approximately 500 digitized Capsella bursa-pastoris specimens collected throughout the continental U.S. over a 100-year period with geometric morphometric modeling and deterministic techniques. We generated a morphospace of C. bursa-pastoris leaf shapes and modeled leaf shape as a function of environment and time. Our results suggest C. bursa-pastoris leaf shape variation is strongly associated with temperature over the C. bursa-pastoris growing season, with lobing decreasing as temperature increases. While we expected to see changes in variation over time, our results show that level of leaf shape variation is consistent over the 100-year period. Our findings showed that species with inconsistent leaf shape variation can be quantified using geometric morphometric modeling techniques and that temperature is the main environmental factor influencing leaf shape variation.

19.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948717

RESUMEN

Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants, especially transposable elements are likely to affect phenotypic variation but we need better methods in maize for detecting polymorphic structural variants and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic structural variants and then genotyped a large maize diversity panel for these variants using short-read sequencing data. We characterized variation of SVs within the panel and identified SV polymorphisms that are associated with life history traits and genotype-by-environment interactions. While most of the SVs associated with traits contained TEs, only one of the SV's boundaries clearly matched TE breakpoints indicative of a TE insertion, whereas the other polymorphisms were likely caused by deletions. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that this method did not identify variants that would have been missed in a SNP association study.

20.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915635

RESUMEN

Traits that have lost function sometimes persist through evolutionary time. These traits may be maintained by a lack of standing genetic variation for the trait, if selection against the trait is weak relative to drift, or if they have a residual function. To determine the evolutionary processes shaping whether nonfunctional traits are retained or lost, we investigated short stamens in 16 populations of Arabidopsis thaliana along an elevational cline in the Spanish Pyrenees. We found a cline in short stamen number from retention of short stamens in high elevation populations to incomplete loss in low elevation populations. We did not find evidence that limited genetic variation constrains the loss of short stamens at high elevations nor evidence for divergent selection on short stamens between high and low elevations. Finally, we identified loci associated with short stamens in the Spanish Pyrenees that are different from loci associated with variation in short stamen number across latitudes from a previous study. Overall, we did not identify the evolutionary mechanisms maintaining an elevational cline in short stamen number but did identify different genetic loci underlying the variation in short stamen along similar phenotypic clines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA