Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Microbiol ; 25(10): 1796-1815, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37145936

RESUMEN

The extent of how complex natural microbial communities contribute to metal corrosion is still not fully resolved, especially not for freshwater environments. In order to elucidate the key processes, we investigated rust tubercles forming massively on sheet piles along the river Havel (Germany) applying a complementary set of techniques. In-situ microsensor profiling revealed steep gradients of O2 , redox potential and pH within the tubercle. Micro-computed tomography and scanning electron microscopy showed a multi-layered inner structure with chambers and channels and various organisms embedded in the mineral matrix. Using Mössbauer spectroscopy we identified typical corrosion products including electrically conductive iron (Fe) minerals. Determination of bacterial gene copy numbers and sequencing of 16S rRNA and 18S rRNA amplicons supported a densely populated tubercle matrix with a phylogenetically and metabolically diverse microbial community. Based on our results and previous models of physic(electro)chemical reactions, we propose here a comprehensive concept of tubercle formation highlighting the crucial reactions and microorganisms involved (such as phototrophs, fermenting bacteria, dissimilatory sulphate and Fe(III) reducers) in metal corrosion in freshwaters.


Asunto(s)
Bacterias , Compuestos Férricos , Corrosión , ARN Ribosómico 16S/genética , Microtomografía por Rayos X , Bacterias/genética , Minerales , Agua Dulce , Oxidación-Reducción
2.
Environ Sci Technol ; 56(23): 16822-16830, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36351078

RESUMEN

Arsenic (As)-bearing water treatment residuals (WTRs) from household sand filters are usually disposed on top of floodplain soils and may act as a secondary As contamination source. We hypothesized that open disposal of these filter-sands to soils will facilitate As release under reducing conditions. To quantify the mobilization risk of As, we incubated the filter-sand, the soil, and a mixture of the filter-sand and soil in anoxic artificial rainwater and followed the dynamics of reactive Fe and As in aqueous, solid, and colloidal phases. Microbially mediated Fe(III)/As(V) reduction led to the mobilization of 0.1-4% of the total As into solution with the highest As released from the mixture microcosms equaling 210 µg/L. Due to the filter-sand and soil interaction, Mössbauer and X-ray absorption spectroscopies indicated that up to 10% Fe(III) and 32% As(V) were reduced in the mixture microcosm. Additionally, the mass concentrations of colloidal Fe and As analyzed by single-particle ICP-MS decreased by 77-100% compared to the onset of reducing conditions with the highest decrease observed in the mixture setups (>95%). Overall, our study suggests that (i) soil provides bioavailable components (e.g., organic matter) that promote As mobilization via microbial reduction of As-bearing Fe(III) (oxyhydr)oxides and (ii) As mobilization as colloids is important especially right after the onset of reducing conditions but its importance decreases over time.


Asunto(s)
Arsénico , Purificación del Agua , Arsénico/metabolismo , Compuestos Férricos , Oxidación-Reducción , Suelo
3.
AAPS PharmSciTech ; 23(8): 300, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380100

RESUMEN

Combination drug therapy (CDT) plays an immense role in the treatment of various diseases such as malaria, hypertension, cancer, HIV-AIDS, helminthiasis, and many more. However, in vitro drug-drug interaction (DDI) is not well reported for better efficacy of CDT. In DDI one drug may enhance the precipitation of other drugs thereby reducing the advantage of CDT. Herein, we report DDI in terms of in vitro precipitation of drugs with albendazole and mebendazole. This may be the first report to propensate the possibility of either drug precipitation in the combination. These drugs are categorized into BCS class II weak base and hence have tendency to precipitate in the gastrointestinal tract. The objective of this study is to find precipitation of drug combinations in different compendial and biorelevant media (deionized water, phosphate buffer pH 6.8, FaSSIF, and FeSSIF) and screening of the polymers for precipitation inhibition. Nine polymers were investigated at three different concentrations in terms of their drug-polymer solubility, in vitro precipitation behavior, induction time, SHC, and droplet size. Although, all the polymers inhibit the precipitation of drugs, the extent of precipitation inhibition for Soluplus is high. The obtained drug-polymer precipitates were filtered, dried, and analyzed for amorphous/partial amorphous form using polarised light microscopy (PLM), differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). The drug-polymer interaction was examined using Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) revealing the effect of polymers on drug precipitation. These insights may further be used in the formulation of CDT for helminthiasis management.


Asunto(s)
Polímeros , Polímeros/química , Solubilidad , Rastreo Diferencial de Calorimetría , Combinación de Medicamentos , Interacciones Farmacológicas
4.
Mol Pharm ; 18(6): 2334-2348, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34003656

RESUMEN

Numerous amorphous solid dispersion (ASD) formulations of celecoxib (CEL) have been attempted for enhancing the solubility, dissolution rate, and in vivo pharmacokinetics via high drug loading, polymer combination, or by surfactant addition. However, physical stability for long-term shelf life and desired in vivo pharmacokinetics remains elusive. Therefore, newer formulation strategies are always warranted to address poor aqueous solubility and oral bioavailability with extended shelf life. The present investigation elaborates a combined strategy of amorphization and salt formation for CEL, providing the benefits of enhanced solubility, dissolution rate, in vivo pharmacokinetics, and physical stability. We generated amorphous salts solid dispersion (ASSD) formulations of CEL via an in situ acid-base reaction involving counterions (Na+ and K+) and a polymer (Soluplus) using the spray-drying technique. The generated CEL-Na and CEL-K salts were homogeneously and molecularly dispersed in the matrix of Soluplus polymer. The characterization of generated ASSDs by differential scanning calorimetry revealed a much higher glass-transition temperature (Tg) than the pure amorphous CEL, confirming the salt formation of CEL in solid dispersions. The micro-Raman and proton nuclear magnetic resonance spectroscopy further confirmed the formation of salt at the -S═O position in the CEL molecules. CEL-Na-Soluplus ASSD exhibited a synergistic enhancement in the aqueous solubility (332.82-fold) and in vivo pharmacokinetics (9.83-fold enhancement in the blood plasma concentration) than the crystalline CEL. Furthermore, ASSD formulations were physically stable for nearly 1 year (352 days) in long-term stability studies at ambient conditions. Hence, we concluded that the ASSD is a promising strategy for CEL in improving the physicochemical properties and biopharmaceutical performance.


Asunto(s)
Celecoxib/química , Composición de Medicamentos/métodos , Excipientes/química , Administración Oral , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Celecoxib/administración & dosificación , Celecoxib/farmacocinética , Química Farmacéutica , Estabilidad de Medicamentos , Femenino , Modelos Animales , Polietilenglicoles/química , Polivinilos/química , Ratas , Solubilidad , Secado por Pulverización , Temperatura de Transición , Difracción de Rayos X
5.
Environ Sci Technol ; 55(15): 10821-10831, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34288663

RESUMEN

Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is strongly affected by organic matter (OM). We herein determined the rate and extent of microbial reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and included-unlike water-extractable OM-compounds released by microbial activity under anoxic conditions. We found that organic molecules in efOM had generally no or only very low electron-accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh. Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction by passivating the Fh surface toward electron uptake. In contrast, coprecipitation of Fh with efOM accelerated the microbial reduction, likely because efOM disrupted the Fh structure, as noted by Mössbauer spectroscopy. Additionally, the adsorbed and coprecipitated efOM resulted in a more sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic Fe(II) and prevented the passivation of the Fh surface by the adsorbed Fe(II). Fe(III)-OM coprecipitates forming at anoxic-oxic interfaces are thus likely readily reducible by Fe(III)-reducing bacteria in redoximorphic soils.


Asunto(s)
Compuestos Férricos , Suelo , Geobacter , Hierro , Minerales , Oxidación-Reducción
6.
J Basic Microbiol ; 59(3): 277-287, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30614549

RESUMEN

Bioemulsifiers (BE) and biosurfactants (BS) are considered as multifunctional biomolecules of 21st century because of their functional abilities and eco-friendly properties. They are produced by various microorganisms under versatile and extreme environmental conditions. They have tremendous applications in various industries such as petroleum, food, medicine, pharmaceutical, chemical, paper & pulp, textile, and cosmetics. Currently, they are also considered as "green molecules" because of their wide applications in bioremediation of soil. Their importance has been increasing day by day in the global market as they are the natural resources with high-aggregate value. Although, there are numerous reports on BE and BS production by different bacteria, Acinetobacter spp. acquired special attention among all. This is because it is the earliest member known for the production of bioemulsifier. Emulsan and Alasan are the best examples of the commercially used BE produced by Acinetobacter spp. These BE are mainly used in microbial enhanced oil recovery and biodegradation of toxic compounds. This review is focused on BE and BS produced by Acinetobacter spp., their characterization and applications in different fields. This is the first review on genus Acinetobacter which defines independently about different types of BE and BS produced by it. It will also address the need of exploration of these molecules from various sources and their applications for the benefit of mankind and sustainable environment.


Asunto(s)
Acinetobacter/metabolismo , Emulsionantes/metabolismo , Tensoactivos/metabolismo , Acinetobacter/clasificación , Antiinfecciosos , Antineoplásicos , Biodegradación Ambiental , Agentes de Control Biológico , Detergentes , Emulsionantes/química , Emulsionantes/clasificación , Depuradores de Radicales Libres , Hidrocarburos/metabolismo , Petróleo/metabolismo , Tensoactivos/química , Tensoactivos/clasificación
7.
Environ Sci Technol ; 52(10): 5600-5609, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29595255

RESUMEN

Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe2+) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential ( EH) values for oxide-bound Fe2+ species. Recently, our group demonstrated that EH values for hematite- and goethite-bound Fe2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated EH values for oxide-bound Fe2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant ( kSA) values and EH and pH values [log( kSA) = - EH/0.059 V - pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe2+ relates to redox reaction kinetics.


Asunto(s)
Contaminantes Ambientales , Compuestos Férricos , Cinética , Oxidación-Reducción , Termodinámica
8.
Environ Sci Technol ; 52(1): 327-336, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29172473

RESUMEN

Polyacrylamide (PAM) based friction reducers are a primary ingredient of slickwater hydraulic fracturing fluids. Little is known regarding the fate of these polymers under downhole conditions, which could have important environmental impacts including decisions on strategies for reuse or treatment of flowback water. The objective of this study was to evaluate the chemical degradation of high molecular weight PAM, including the effects of shale, oxygen, temperature, pressure, and salinity. Data were obtained with a slickwater fracturing fluid exposed to both a shale sample collected from a Marcellus outcrop and to Marcellus core samples at high pressures/temperatures (HPT) simulating downhole conditions. Based on size exclusion chromatography analyses, the peak molecular weight of the PAM was reduced by 2 orders of magnitude, from roughly 10 MDa to 200 kDa under typical HPT fracturing conditions. The rate of degradation was independent of pressure and salinity but increased significantly at high temperatures and in the presence of oxygen dissolved in fracturing fluids. Results were consistent with a free radical chain scission mechanism, supported by measurements of sub-µM hydroxyl radical concentrations. The shale sample adsorbed some PAM (∼30%), but importantly it catalyzed the chemical degradation of PAM, likely due to dissolution of Fe2+ at low pH. These results provide the first evidence of radical-induced degradation of PAM under HPT hydraulic fracturing conditions without additional oxidative breaker.


Asunto(s)
Fracking Hidráulico , Contaminantes Químicos del Agua , Resinas Acrílicas , Aguas Residuales
9.
J Nanosci Nanotechnol ; 18(10): 6765-6775, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29954492

RESUMEN

Despite several advancements in the biomedical sciences, an efficient cancer therapy still remains a challenge. Nanomedicines have shown potential to overcome certain roadblocks faced in the existing treatment modalities. Losartan potassium (LP) which is a known vasodilator also exhibits anti fibrolytic and anti-metastatic properties altogether. Further, also being a potential angiotensin II type 1 receptor antagonist, it has been well explored for down regulating tumourogenic biomarkers like VEGF-A (Vascular endothelial growth factor A) and suppression of neovascularization, making it a suitable drug to target for cancer treatment. Besides this, it too reflected the stimulation of pro apoptotic signaling pathways. But due to its lower bioavailability and extensive hepatic metabolism its therapeutic index reduces down. Thus, the present study is focused on designing a nano-delivery system using graphene oxide (GO) as a nano-vehicle and conjugated the LP with it. Then, the successful synthesis of GO and GO-LP nano conjugates were characterized by high-resolution transmission electron microscopy, X-ray diffraction, FTIR and UV visible spectroscopy, confirming the formation of nanosheets. The qualitative morphological evaluation of NB41A3 neuroblastoma cell line treated with bare GO, LP and GO-LP using microscopy and DAPI staining revealed the inhibitory action of GO-LP nano conjugate on cell proliferation. Additionally, the cytotoxicity was also estimated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), Nitric oxide (NO) and Lactate dehydrogenase (LDH) assays. The results show that GO-LP significantly suppresses the cell viability in comparison to control and bare GO suggesting that the designed system may express its potential to be used with existing chemo drugs for the treatment of neural cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Grafito/uso terapéutico , Losartán/uso terapéutico , Nanoconjugados/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/química , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Grafito/química , Losartán/análogos & derivados , Ratones , Nanoconjugados/química
10.
Environ Sci Technol ; 51(20): 11681-11691, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28895726

RESUMEN

Recent work has shown that iron oxides, such as goethite and hematite, may recrystallize in the presence of aqueous Fe2+ under anoxic conditions. This process, referred to as Fe2+-catalyzed recrystallization, can influence water quality by causing the incorporation/release of environmental contaminants and biological nutrients. Accounting for the effects of Fe2+-catalyzed recrystallization on water quality requires knowing the time scale over which recrystallization occurs. Here, we tested the hypothesis that nanoparticulate goethite becomes less susceptible to Fe2+-catalyzed recrystallization over time. We set up two batches of reactors in which 55Fe2+ tracer was added at two different time points and tracked the 55Fe partitioning in the aqueous and goethite phases over 60 days. Less 55Fe uptake occurred between 30 and 60 days than between 0 and 30 days, suggesting goethite recrystallization slowed with time. Fitting the data with a box model indicated that 17% of the goethite recrystallized after 30 days of reaction, and an additional 2% recrystallized between 30 and 60 days. The decreasing susceptibility of goethite to recrystallize as it reacted with aqueous Fe2+ suggested that recrystallization is likely only an important process over short time scales.


Asunto(s)
Compuestos de Hierro , Minerales , Compuestos Férricos , Oxidación-Reducción , Agua
11.
Environ Sci Technol ; 50(14): 7315-24, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27345864

RESUMEN

When goethite is exposed to aqueous Fe(2+), rapid and extensive Fe atom exchange can occur between solid-phase Fe(3+) and aqueous Fe(2+) in a process referred to as Fe(2+)-catalyzed recrystallization. This process can lead to the structural incorporation or release of trace elements, which has important implications for contaminant remediation and nutrient biogeochemical cycling. Prior work found that the process did not cause major changes to the goethite structure or morphology. Here, we further investigated if and how goethite morphology and aggregation behavior changed temporally during Fe(2+)-catalyzed recrystallization. On the basis of existing literature, we hypothesized that Fe(2+)-catalyzed recrystallization of goethite would not result in changes to individual particle morphology or interparticle interactions. To test this, we reacted nanoparticulate goethite with aqueous Fe(2+) at pH 7.5 over 30 days and used transmission electron microscopy (TEM), cryogenic TEM, and (55)Fe as an isotope tracer to observe changes in particle dimensions, aggregation, and isotopic composition over time. Over the course of 30 days, the goethite particles substantially recrystallized, and the particle dimensions changed anisotropically, resulting in a preferential increase in the mean particle width. The temporal changes in goethite morphology could not be completely explained by a single mineral-transformation mechanism but rather indicated that multiple transformation mechanisms occurred concurrently. Collectively, these results demonstrate that the morphology of goethite nanoparticles does change during recrystallization, which is an important step toward identifying the driving force(s) of recrystallization.


Asunto(s)
Compuestos de Hierro/química , Minerales/química , Anisotropía , Microscopía Electrónica de Transmisión , Oligoelementos , Agua/química
12.
Environ Sci Technol ; 48(15): 8688-97, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24930689

RESUMEN

Iron is an important redox-active element that is ubiquitous in both engineered and natural environments. In this study, the retention mechanism of Fe(II) on clay minerals was investigated using macroscopic sorption experiments combined with Mössbauer and extended X-ray absorption fine structure (EXAFS) spectroscopy. Sorption edges and isotherms were measured under anoxic conditions on natural Fe-bearing montmorillonites (STx, SWy, and SWa) having different structural Fe contents ranging from 0.5 to 15.4 wt % and different initial Fe redox states. Batch experiments indicated that, in the case of low Fe-bearing (STx) and dithionite-reduced clays, the Fe(II) uptake follows the sorption behavior of other divalent transition metals, whereas Fe(II) sorption increased by up to 2 orders of magnitude on the unreduced, Fe(III)-rich montmorillonites (SWy and SWa). Mössbauer spectroscopy analysis revealed that nearly all the sorbed Fe(II) was oxidized to surface-bound Fe(III) and secondary Fe(III) precipitates were formed on the Fe(III)-rich montmorillonite, while sorbed Fe is predominantly present as Fe(II) on Fe-low and dithionite-reduced clays. The results provide compelling evidence that Fe(II) uptake characteristics on clay minerals are strongly correlated to the redox properties of the structural Fe(III). The improved understanding of the interfacial redox interactions between sorbed Fe(II) and clay minerals gained in this study is essential for future studies developing Fe(II) sorption models on natural montmorillonites.


Asunto(s)
Bentonita/química , Compuestos Férricos/química , Compuestos Ferrosos/química , Hierro/química , Adsorción , Silicatos de Aluminio , Arcilla , Minerales/química , Oxidación-Reducción , Espectroscopía de Mossbauer , Espectroscopía de Absorción de Rayos X
13.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486406

RESUMEN

α-amylases are industrially important enzymes which are used in different starch-based industries. They are adapted to different environmental conditions like extremes of temperature, pH and salinity. Herein, α-amylases from Bacillus amyloliquifaciens (BAA) and Bacillus licheniformis (BLA), representing mesophilic and thermophilic-like proteins, respectively, have been used to investigate the effect of naturally occurring osmolytes like arginine, proline, glycine and its methyl derivatives, sarcosine and betaine on their refolding. In this study, we have shown that among amino acids and glycine derivatives, betaine is the most promising osmolyte, while arginine and glycine exhibit moderately positive effect at their lower concentrations on the refolding of BAA only. Except betaine, all other osmolytes above 0.25 M showed inhibitory effect on the native enzyme activity of BLA and BAA. However, aggregation kinetics monitored by static light scattering indicates suppression of aggregation by all of these osmolytes. Further investigation by tryptophan and ANS fluorescence spectroscopy indicates the formation of compact hydrophobic core in the presence of the osmolytes. The morphology of protein aggregates having different sizes was visualized by atomic force microscopy ,and it was observed that amorphous aggregates of variable heights were formed. Our study highlights the importance of differential effects of arginine, proline, glycine, sarcosine and betaine on the native state as well as on refolding of BLA and BAA which may be helpful in devising strategies for developing effective protein formulation and prevention of aggregation of industrially and therapeutically important proteins.Communicated by Ramaswamy H. Sarma.

14.
Environ Sci Process Impacts ; 26(8): 1322-1335, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39007288

RESUMEN

Future permafrost thaw will likely lead to substantial release of greenhouse gases due to thawing of previously unavailable organic carbon (OC). Accurate predictions of this release are limited by poor knowledge of the bioavailability of mobilized OC during thaw. Organic carbon bioavailability decreases due to adsorption to, or coprecipitation with, poorly crystalline ferric iron (Fe(III)) (oxyhydr)oxide minerals but the maximum binding extent and binding selectivity of permafrost OC to these minerals is unknown. We therefore utilized water-extractable organic matter (WEOM) from soils across a permafrost thaw gradient to quantify adsorption and coprecipitation processes with poorly crystalline Fe(III) (oxyhydr)oxides. We found that the maximum adsorption capacity of WEOM from intact and partly thawed permafrost soils was similar (204 and 226 mg C g-1 ferrihydrite, respectively) but decreased to 81 mg C g-1 ferrihydrite for WEOM from the fully thawed site. In comparison, coprecipitation of WEOM from intact and partly thawed soils with Fe immobilized up to 925 and 1532 mg C g-1 Fe respectively due to formation of precipitated Fe(III)-OC phases. Analysis of the OC composition before and after adsorption/coprecipitation revealed that high molecular weight, oxygen-rich, carboxylic- and aromatic-rich OC was preferentially bound to Fe(III) minerals relative to low molecular weight, aliphatic-rich compounds which may be more bioavailable. This selective binding effect was stronger after adsorption than coprecipitation. Our results suggest that OC binding by Fe(III) (oxyhydr)oxides sharply decreases under fully thawed conditions and that small, aliphatic OC molecules that may be readily bioavailable are less protected across all thaw stages.


Asunto(s)
Hielos Perennes , Adsorción , Hielos Perennes/química , Minerales/química , Hierro/química , Suelo/química , Compuestos Férricos/química , Precipitación Química , Monitoreo del Ambiente
15.
Cureus ; 16(2): e54699, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38529429

RESUMEN

Hypernatremia or high serum sodium levels can have many different causes, including insufficient free water intake, or excess free water losses. The management of hypernatremia focuses on resolving the underlying cause, replenishing free water deficit, and preventing further losses while closely monitoring serum sodium concentration. This systematic review was carried out using medical databases such as PubMed, PubMed Central, and Google Scholar for relevant medical literature. The identified articles were reviewed, eligibility criteria were applied, and seven research articles were identified. The effect of the rate of hypernatremia correction on both short- and long-term outcomes in volume-resuscitated patients was the focus of our search for randomized or observational studies. Based on our analysis of the clinical evidence, we concluded that the present recommendations for treating acute and chronic hypernatremia in resuscitated patients do not stem from high-quality research.

16.
Sci Total Environ ; 946: 174321, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38942322

RESUMEN

Thawing permafrost forms "thaw ponds" that accumulate and transport organic carbon (OC), redox-active iron (Fe), and other elements. Although Fe has been shown to act as a control on the microbial degradation of OC in permafrost soils, the role of iron in carbon cycling in thaw ponds remains poorly understood. Here, we investigated Fe-OC interactions in thaw ponds in partially and fully thawed soils ("bog" and "fen" thaw ponds, respectively) in a permafrost peatland complex in Abisko, Sweden, using size separation (large particulate fraction (LPF), small particulate fraction (SPF), and dissolved fraction (DF)), acid extractions, scanning electron microscopy (SEM), Fe K-edge X-ray absorption spectroscopy (XAS), and Fourier Transform Infrared (FTIR) spectroscopy. The bulk total Fe (total suspended Fe) in the bogs ranged from 135 mg/L (mean = 13 mg/L) whereas the fens exhibited higher total Fe (1.5 to 212 mg/L, mean = 30 mg/L). The concentration of bulk total OC (TOC) in the bog thaw ponds ranged from 50 to 352 mg/L (mean = 170 mg/L), higher than the TOC concentration in the fen thaw ponds (8.5 to 268 mg/L, mean = 17 mg/L). The concentration of 1 M HCl-extractable Fe in the bog ponds was slightly lower than that in the fens (93 ± 1.2 and 137 ± 3.5 mg/L Fe, respectively) with Fe predominantly (>75 %) in the DF in both thaw stages. Fe K-edge XAS analysis showed that while Fe(II) was the predominant species in LPF, Fe(III) was more abundant in the DF, indicating that the stage of thawing and particle size may control Fe redox state. Furthermore, Fe(II) and Fe(III) were partially complexed with natural organic matter (NOM, 8 to 80 %) in both thaw ponds. Results of our work suggest that Fe and OC released during permafrost thaw into thaw ponds (re-)associate, potentially protecting OC from microbial decomposition while also stabilizing the redox state of Fe.

17.
Curr Pharm Biotechnol ; 24(8): 946-969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35894466

RESUMEN

The nasal route, a subgroup of mucosal delivery systems, constitutes a lucrative and encouraging substitute for administering drugs and vaccines. Over the years, a lot of research has been done in this area, and scientists have successfully explored this pathway using novel formulations to combat several infections. This review article aims to address the pathways of mucosal immunization, the dominance of the nasal route over other mucosal routes for immunization, and the mechanism of generation of immunogenic response via nasal route and nanotechnology-based approaches for intranasal vaccination. The immunotherapeutic and vaccinations for intranasal administration available in the market are also discussed, along with a brief overview of the products in the pipeline. It can also be assumed that such an approach can prove to be favorable in designing vaccinations for the current uncertain times. In spite of some dubious views on this.


Asunto(s)
Vacunación , Vacunas , Administración Intranasal , Inmunización , Inmunidad Mucosa
18.
Biol Open ; 12(4)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946871

RESUMEN

Arf1 belongs to the Arf family of small GTPases that localise at the Golgi and plasma membrane. Active Arf1 plays a crucial role in regulating Golgi organisation and function. In mouse fibroblasts, loss of adhesion triggers a consistent drop (∼50%) in Arf1 activation that causes the Golgi to disorganise but not fragment. In suspended cells, the trans-Golgi (GalTase) disperses more prominently than cis-Golgi (Man II), accompanied by increased active Arf1 (detected using GFP-ABD: ARHGAP10 Arf1 binding domain) associated with the cis-Golgi compartment. Re-adhesion restores Arf1 activation at the trans-Golgi as it reorganises. Arf1 activation at the Golgi is regulated by Arf1 Guanine nucleotide exchange factors (GEFs), GBF1, and BIG1/2. In non-adherent fibroblasts, the cis-medial Golgi provides a unique setting to test and understand the role GEF-mediated Arf1 activation has in regulating Golgi organisation. Labelled with Man II-GFP, non-adherent fibroblasts treated with increasing concentrations of Brefeldin-A (BFA) (which inhibits BIG1/2 and GBF1) or Golgicide A (GCA) (which inhibits GBF1 only) comparably decrease active Arf1 levels. They, however, cause a concentration-dependent increase in cis-medial Golgi fragmentation and fusion with the endoplasmic reticulum (ER). Using selected BFA and GCA concentrations, we find a change in the kinetics of Arf1 inactivation could mediate this by regulating cis-medial Golgi localisation of GBF1. On loss of adhesion, a ∼50% drop in Arf1 activation over 120 min causes the Golgi to disorganise. The kinetics of this drop, when altered by BFA or GCA treatment causes a similar decline in Arf1 activation but over 10 min. This causes the Golgi to now fragment which affects cell surface glycosylation and re-adherent cell spreading. Using non-adherent fibroblasts this study reveals the kinetics of Arf1 inactivation, with active Arf1 levels, to be vital for Golgi organisation and function.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Aparato de Golgi , Ratones , Animales , Aparato de Golgi/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Membrana Celular/metabolismo , Fibroblastos/metabolismo
19.
Commun Chem ; 6(1): 201, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749228

RESUMEN

The propensity of poorly water-soluble drugs to aggregate at supersaturation impedes their bioavailability. Supersaturated amorphous drug-salt-polymer systems provide an emergent approach to this problem. However, the effects of polymers on drug-drug interactions in aqueous phase are largely unexplored and it is unclear how to choose an optimal salt-polymer combination for a particular drug. Here, we describe a comparative experimental and computational characterization of amorphous solid dispersions containing the drug celecoxib, and a polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA) or hydroxypropyl methylcellulose acetate succinate, with or without Na+/K+ salts. Classical models for drug-polymer interactions fail to identify the best drug-salt-polymer combination. In contrast, more stable drug-polymer interaction energies computed from molecular dynamics simulations correlate with prolonged stability of supersaturated amorphous drug-salt-polymer systems, along with better dissolution and pharmacokinetic profiles. The celecoxib-salt-PVP-VA formulations exhibit excellent biopharmaceutical performance, offering the prospect of a low-dosage regimen for this widely used anti-inflammatory, thereby increasing cost-effectiveness, and reducing side-effects.

20.
Eur J Pharm Sci ; 188: 106521, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423578

RESUMEN

Intravenous iron-carbohydrate nanomedicines are widely used to treat iron deficiency and iron deficiency anemia across a wide breadth of patient populations. These colloidal solutions of nanoparticles are complex drugs which inherently makes physicochemical characterization more challenging than small molecule drugs. There have been advancements in physicochemical characterization techniques such as dynamic light scattering and zeta potential measurement, that have provided a better understanding of the physical structure of these drug products in vitro. However, establishment and validation of complementary and orthogonal approaches are necessary to better understand the 3-dimensional physical structure of the iron-carbohydrate complexes, particularly with regard to their physical state in the context of the nanoparticle interaction with biological components such as whole blood (i.e. the nano-bio interface).


Asunto(s)
Hierro , Nanopartículas , Humanos , Tamaño de la Partícula , Nanomedicina/métodos , Nanopartículas/química , Administración Intravenosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA