Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chemistry ; 30(23): e202304333, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38373190

RESUMEN

This study presents a comparative analysis of S-annulated perylene tetraester (PTE-S) and its sulfone (PTE-SO2) analogue. This sulfone modification reduced melting point and stabilized a room temperature columnar rectangular (Colr) phase in contrast to its parent PTE-S which showed a crystalline behaviour at room temperature. This molecular design also leads to red-shifted absorbance and emission in comparison to PTE-S, along with a tuning of photoluminescence from sky blue to green, achieving an impressive quantum yield of 85 %. OLED devices fabricated using PTE-SO2 as emitter material at concentrations of 0.2, 0.5, and 1 wt.% in CBP as host material. A maximum external quantum efficiency (EQE) of 2.9 % was observed with the 0.5 wt.% PTE-SO2 in CBP with CIE coordinates of (0.45, 0.35), accompanied by an orange luminance of 848 cd/m2. Notably, a device with a 0.5 wt% doping concentration of PTE-S demonstrates an EQE of 3.5 %, and cyan luminance of 2,598 cd/m2.

2.
Langmuir ; 40(10): 5137-5150, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412064

RESUMEN

Imidazole, being an interesting dinitrogenic five-membered heterocyclic core, has been widely explored during the last several decades for developing various fascinating materials. Among the different domains where imidazole-based materials find wide applications, the area of optoelectronics has seen an overwhelming growth of functional imidazole derivatives developed through remarkable design and synthesis strategies. The present work reports a design approach for integrating bulky donor units at the four terminals of an imidazole core, leading to the development of sterically populated imidazole-based molecular platforms with interesting structural features. Rationally chosen starting substrates led to the incorporation of a bulky donor at the four terminals of the imidazole core. In addition, homo- and cofunctional molecular systems were synthesized through a suitable combination of initial ingredients. Our approach was extended to develop a series of four molecular systems, i.e., Cz3PhI, Cz4I, Cz3PzI, and TPA3CzI, containing carbazole, phenothiazine, and triphenylamine as known efficient donors at the periphery. Given their interesting structural features, three sterically crowded molecules (Cz4I, Cz3PzI, and TPA3CzI) were screened by using DFT and TD-DFT calculations to investigate their potential as hole transport materials (HTMs) for optoelectronic devices. The theoretical studies on several aspects including hole reorganization and exciton binding energies, ionization potential, etc., revealed their potential as possible candidates for the hole transport layer of OLEDs. Single-crystal analysis of Cz3PhI and Cz3PzI established interesting structural features including twisted geometries, which may help attain high triplet energy. Finally, the importance of theoretical predictions was established by fabricating two solution-process green phosphorescent OLED devices using TPA3CzI and Cz3PzI as HTMs. The fabricated devices exhibited good EQE/PE and CE of ∼15%/56 lm/W/58 cd/A and ∼13%/47 lm/W/50 cd/A, respectively, at 100 cd/m2.

3.
Phys Chem Chem Phys ; 26(15): 11922-11932, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572672

RESUMEN

In recent times, self-assembled electron transport materials for optoelectronic devices, both solar cells and organic light-emitting diodes (OLEDs), have been gaining much interest as they help in fabricating high-efficiency devices. However, designing organic small molecular materials with star-shaped self-assembled networks is a challenge. To achieve this sort of target, we chose triazine and benzene-1,3,5-tricarbonyl cores for developing such architecture, and we developed four molecular systems, vizTCpCN, TCmCN, TmCN, and TpCN. Successful isolation of single crystals followed by structural analysis of TmCN revealed interesting molecular arrangements in the solid state resulting in the formation of a waterwheel type architecture with an extended network bearing characteristic voids. Theoretical calculations was carried out to check their electron transportability. The natural transition orbital calculation helped in understanding the locally excited and charge transfer excited states. The low electron reorganization energies of these molecules indicated that these materials may have potential to be used in electron transport layers of optoelectronic devices, particularly in OLEDs. Moreover, the assembled networks have a relatively wide surface area and linked structures, which are advantageous for the conduction of carriers with poor electron recombination inside the ETL, and these may offer a straightforward channel for electron conduction to the emissive layer. Finally, the fabricated electron-only device indicated that the synthesized materials may be used as ETMs in the electron transport layer of optoelectronic devices.

4.
Molecules ; 29(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611951

RESUMEN

Over the past few decades, organic light-emitting diodes (OLEDs) find applications in smartphones, televisions, and the automotive sector. However, this technology is still not perfect, and its application for lighting purposes has been slow. For further development of the OLEDs, we designed twisted donor-acceptor-type electroactive bipolar derivatives using benzophenone and bicarbazole as building blocks. Derivatives were synthesized through the reaction of 4-fluorobenzophenone with various mono-alkylated 3,3'-bicarbazoles. We have provided a comprehensive structural characterization of these compounds. The new materials are amorphous and exhibit suitable glass transition temperatures ranging from 57 to 102 °C. They also demonstrate high thermal stability, with decomposition temperatures reaching 400 °C. The developed compounds exhibit elevated photoluminescence quantum yields (PLQY) of up to 75.5% and favourable HOMO-LUMO levels, along with suitable triplet-singlet state energy values. Due to their good solubility and suitable film-forming properties, all the compounds were evaluated as blue TADF emitters dispersed in commercial 4,4'-bis(N-carbazolyl)-1,10-biphenyl (CBP) host material and used for the formation of emissive layer of organic light-emitting diodes (OLEDs) in concentration-dependent experiments. Out of these experiments, the OLED with 15 wt% of the emitting derivative 4-(9'-{2-ethylhexyl}-[3,3']-bicarbazol-9-yl)benzophenone exhibited superior performance. It attained a maximum brightness of 3581 cd/m2, a current efficacy of 5.7 cd/A, a power efficacy of 4.1 lm/W, and an external quantum efficacy of 2.7%.

5.
Chemistry ; 29(18): e202203282, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36546896

RESUMEN

Considering the difficulties associated with the conventional 'trial and error' method for a complete analysis of a giant molecular space, we took the aid of computational pathway (DFT) in screening a large space search of 780 (12×13×5) molecules to search for a host for the blue emitter. The selection process was completed in three Tiers with the conditions of highest theoretical triplet energy (>2.81 eV), aligned HOMO/LUMO levels w.r.t blue dopant (FIrpic), and position of substituents to meet the optimal requirements as host materials. Tier 1 screened twelve different imidazole heterocycle derivatives as base space groups which resulted in the selection of 4,5-diphenyl-1H-imidazole. Tier 2 process converged the search to mCN-CZ having the highest triplet energy and appropriate HOMO/LUMO level relative to FIrpic and ETL. Further, the carbazole of mCN-CZ was replaced with different aromatic hydrocarbons to find the other best compound in terms of triplet energy and HOMO/LUMO. Tier 3 resulted in another promising candidate (mCN-FL) as possible host materials. The band alignment with guest predicted mCN-FL and mCN-CZ to have optimal device performances compared to CZ-CZ and the experimentally observed device performance was in accordance with virtual screening results when TAPC was utilized as the hole transporter. The device results of mCN-CZ and mCN-FL were better than the reference host TCTA. The obtained results thus proved that a virtual screening process will be a useful tool for synthetic chemists in designing task-specific materials.

6.
Phys Chem Chem Phys ; 25(29): 19648-19659, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37435981

RESUMEN

The advancement in developing highly efficient hole transport materials for OLED devices has been a challenge over the past several years. For an efficient OLED device, there should be an efficient promotion of charge carriers from each electrode and effective confinement of triplet excitons in the emissive layer of the phosphorescent OLED (PhOLED). Thus, the development of stable and high triplet energy hole transport materials is in urgent demand for high-performing PhOLED devices. The present work demonstrates the development of two hetero-arylated pyridines as high triplet energy (2.74-2.92 eV) multifunctional hole transport materials to reduce the exciton quenching and to enhance the extent of charge carrier recombination in the emissive layer. In this regard, we report the design, synthesis, and theoretical modeling with electro-optical properties of two molecules, namely PrPzPy and MePzCzPy, with suitable HOMO/LUMO energy levels and high triplet energy, by incorporating phenothiazine as well as other donating units into a pyridine scaffold, and finally developing a hybrid phenothiazine-carbazole-pyridine based molecular architecture. The natural transition orbital (NTO) calculations were done to analyze the excited state sensation in these molecules. The long-range charge transfer characteristics between the higher singlet and triplet states were also analyzed. The reorganization energy of each molecule was calculated to examine their hole transportability. The theoretical calculations for PrPzPy and MePzCzPy revealed that these two molecular systems could be promising materials for the hole transport layer of OLED devices. As a proof of concept, a solution-processed hole-only device (HOD) of PrPzPy was fabricated. The increase in current density with an increase in operating voltage in the range of ∼3-10 V supported that the suitable HOMO energy of PrPzPy can facilitate the hole transportation from the hole injection layer (HIL) to the emissive layer (EML). These results indicated the promising hole transportability of the present molecular materials.

7.
Molecules ; 28(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37630279

RESUMEN

Organic light-emitting diodes (OLEDs) have revolutionized the world of technology, making significant contributions to enhancing our everyday lives. With their exceptional display and lighting capabilities, OLEDs have become indispensable in various industries such as smartphones, tablets, televisions, and automotives. They have emerged as a dominant technology, inspiring continuous advancements, and improvements. Taking inspiration from the remarkable advancements in OLED advancements, we have successfully developed naphtalimide-based compounds, namely RB-08, RB-09, RB-10, and RB-11. These compounds exhibit desirable characteristics such as a wide bandgap, high decomposition temperatures (306-366 °C), and very high glass transition temperatures (133-179 °C). Leveraging these exceptional properties, we have harnessed these compounds as green emitters in the aforementioned devices. Among the various fabricated OLEDs, the one incorporating the RB-11 emitter has exhibited superior performance. This specific configuration achieved maximum power efficacy of 7.7 lm/W, current efficacy of 7.9 cd/A, and external quantum efficiency of 3.3%. These results highlight the outstanding capabilities of our synthesized emitter and its potential for further advancements in the field.

8.
Soft Matter ; 18(46): 8850-8855, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36374203

RESUMEN

Herein, we reveal a homologous series of liquid crystals involving perylene tetraesters as the core connected to the four trialkoxyphenyl units at the periphery using the triazole moiety as the linker. A thorough analysis using differential scanning calorimetry, polarized optical microscopy, and small- and wide-angle X-ray scattering studies confirm that all the mesogens 1a-c hold a stable enantiotropic columnar mesophase. Suitable molecular orbital levels and excellent material photophysical and thermal properties encouraged the study of their electroluminescent properties. Due to this, a well designed solution-processable organic light emitting diode device structure is configured as ITO (125 nm)/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) (35 nm)/host: x wt% emitter (x = 0.5, 1.0, 3.0, 5.0) (20 nm)/2,2'2''-(1,3,5-benzinetriyl)tris(1-phenyl-1-H-benzimidazole) (TPBi) (40 nm)/lithium fluoride (LiF) (1 nm)/aluminium (Al) (200 nm) using compounds 1a-c as emitters. 4,4',4''-Tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA) and 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) were chosen as two different host materials. The current density-voltage-luminance and current efficacy-luminance-power efficacy plots suggest that m-MTDATA is a better host than CBP. Amongst, device based on 1 wt% emitter 1c doped in the m-MTDATA host matrix displayed the best performance, with a maximum power efficacy of 17.2 lm W-1, current efficacy of 18.5 cd A-1, and external quantum efficiency of 6.3%.

9.
Soft Matter ; 18(4): 922, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35018961

RESUMEN

Correction for 'Luminescent columnar discotics as highly efficient emitters in pure deep-blue OLEDs with an external quantum efficiency of 4.7%' by Joydip De et al., Soft Matter, 2022, DOI: 10.1039/d1sm01558c.

10.
Soft Matter ; 18(22): 4214-4219, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34935025

RESUMEN

Development of materials that serve as efficient blue emitters in solution-processable OLEDs is challenging. In this study, we report three derivatives of C3-symmetric 1,3,5-tris(thien-2-yl)benzene-based highly luminescent room temperature columnar discotic liquid crystals (DLCs) suitable as solid-state emitters in OLED devices. When employed in solution-processed OLEDs, one of the derivatives having the highest photoluminescence quantum yield exhibited a maximum EQE of 4.7% and CIE chromaticity of (0.16, 0.05) corresponding to the ultra deep-blue emission. The finding is sufficiently significant in the field of DLC-based deep blue emitters.

11.
J Org Chem ; 86(10): 7256-7262, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33955757

RESUMEN

A unique strategy for the attainment of a discotic nematic (ND) mesophase is reported consisting of a central benzene core to which are attached two 4-alkylphenyl and two 4-pentylbiphenyl moieties diagonally via alkynyl linkers. The rotational nature and incompatibility of unequal phenylethynyl units led to the disruption of π-π interactions within cores that aids to the realization of ND phase and favors high solid-state emission. When used in OLEDs, compounds act as an efficient solid-state pure deep-blue emitter with Commission Internationale de L'Eclairage (CIEx,y) coordinates of (0.16, 0.07).

12.
Inorg Chem ; 60(24): 19128-19135, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34865472

RESUMEN

Earth-abundant and cheaper zinc-based organometallic molecules as luminophores are drawing significant research attention for solid-state lighting devices. In this paper, we report two air-stable zinc complexes, where the zinc is coordinated to two sterically encumbered ß-diketiminate ligands in a tetrahedral geometry. In such a geometry, eight phenyl/aryl rings from the ligand backbones are oriented in a propeller shape, augmenting the restricted rotation of the putative rings. Such an architecture harnesses aggregation-induced emission behavior with an excellent solid-state emission property. The rigidity of these molecules reduces the possibility of non-radiative transitions and makes them excellent fluorescence emitters. Both molecules exhibit electroluminescence (EL) in the yellowish-green region of the visible spectrum. We have utilized these molecules as emitters to fabricate multilayered organic light-emitting diode (OLED) devices. The emitter Zn-I in host m-MTDATA exhibits EL with a maximum external quantum efficiency of 4.4%. Among the handful of zinc-based OLEDs, the performance of this emitter is very commendable with power and current efficacies of 15.2 lm W-1 and 12.1 cd A-1, respectively, along with a brightness of 2426 cd m-2.

13.
Molecules ; 26(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946643

RESUMEN

Low color temperature candlelight organic light-emitting diodes (LEDs) are human and environmentally friendly because of the absence of blue emission that might suppress at night the secretion of melatonin and damage retina upon long exposure. Herein, we demonstrated a lighting device incorporating a phenoxazine-based host material, 3,3-bis(phenoxazin-10-ylmethyl)oxetane (BPMO), with the use of orange-red and yellow phosphorescent dyes to mimic candlelight. The resultant BPMO-based simple structured candlelight organic LED device permitted a maximum exposure limit of 57,700 s, much longer than did a candle (2750 s) or an incandescent bulb (1100 s) at 100 lx. The resulting device showed a color temperature of 1690 K, which is significantly much lower than that of oil lamps (1800 K), candles (1900 K), or incandescent bulbs (2500 K). The device showed a melatonin suppression sensitivity of 1.33%, upon exposure for 1.5 h at night, which is 66% and 88% less than the candle and incandescent bulb, respectively. Its maximum power efficacy is 23.1 lm/W, current efficacy 22.4 cd/A, and external quantum efficiency 10.2%, all much higher than the CBP-based devices. These results encourage a scalable synthesis of novel host materials to design and manufacture high-efficiency candlelight organic LEDs.

14.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361768

RESUMEN

Pyridinyl-carbazole fragments containing low molar mass compounds as host derivatives H1 and H2 were synthesized, investigated, and used for the preparation of electro-phosphorescent organic light-emitting devices (PhOLEDs). The materials demonstrated high stability against thermal decomposition with the decomposition temperatures of 361-386 °C and were suitable for the preparation of thin amorphous and homogeneous layers with very high values of glass transition temperatures of 127-139 °C. It was determined that triplet energy values of the derivatives are, correspondingly, 2.82 eV for the derivative H1 and 2.81 eV for the host H2. The new derivatives were tested as hosts of emitting layers in blue, as well as in green phosphorescent OLEDs. The blue device with 15 wt.% of the iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) emitter doping ratio in host material H2 exhibited the best overall characteristics with a power efficiency of 24.9 lm/W, a current efficiency of 23.9 cd/A, and high value of 10.3% of external quantum efficiency at 100 cd/m2. The most efficient green PhOLED with 10 wt% of Ir(ppy)3 {tris(2-phenylpyridine)iridium(III)} in the H2 host showed a power efficiency of 34.1 lm/W, current efficiency of 33.9 cd/A, and a high value of 9.4% for external quantum efficiency at a high brightness of 1000 cd/m2, which is required for lighting applications. These characteristics were obtained in non-optimized PhOLEDs under an ordinary laboratory atmosphere and could be improved in the optimization process. The results demonstrate that some of the new host materials are very promising components for the development of efficient phosphorescent devices.

15.
Nanotechnology ; 31(29): 295204, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32050168

RESUMEN

Organic light-emitting diodes (OLEDs) have attracted increasing attention due to their superiority as high quality displays and energy-saving lighting. However, improving the efficiency of solution-processed devices especially based on blue emitter remains a challenge. Excitation of surface plasmons on metallic nanoparticles has potential for increasing the absorption and emission from optoelectronic devices. We demonstrate here that the incorporation of gold nano particles (GNPs) in the hole injection layer of poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid with an appropriate size and doping concentration can greatly enhance the efficiency OLED device especially at higher voltage. Apparently, the spectral of the multiple plasmon resonances of the GNPs and the luminescence of the emitting materials significantly overlap with each other. At 1000 cd m-2 for example, the power efficiency of a studied green device is increased from 29.0 to 36.2 lm W-1, an increment of 24.8%, and the maximum brightness improved from 21 550 to 27 810  cd m-2, an increment of 29.1%, as 2 wt% of a 12 nm GNP is incorporated. Remarkably, designed blue OLED also exhibited an increment of 50% and 35% in power efficacy at 100 and 1000 cd m-2, respectively, for same device structure. The reason why the enhancement is marked may be attributed to a strong absorption of the short-wavelength emission from the device by the gold nano particles, which in turn initiates a strong surface plasmon resonance effect, leading to a high device efficiency.

16.
J Org Chem ; 84(12): 7674-7684, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117555

RESUMEN

A series of donor-acceptor pyranones (3a-m, 4a-h) were synthesized using α-oxo-ketene- S, S-acetal as the synthon for their application as emissive materials for energy-saving organic light-emitting devices (OLEDs). Among them, five pyranones 3f, 3g, 3h, 3m, and 4e exhibited highly bright fluorescence in the solid state and weak or no emission in the solution state. Photophysical analysis of these dyes revealed that only 3f and 3m showed aggregation-induced emission behavior in a THF/water mixture (0-99%) with varying water fractions ( fw) leading to bright fluorescence covering the entire visible region, while other derivatives 3g, 3h, and 4e did not show any fluorescence signal. The computational studies of the compounds revealed that the longer wavelength absorption originates from HOMO to LUMO electronic excitation. These dyes exhibited good thermal stability with 5% weight loss temperature in the range of 218-347 °C. The potential application of the donor-acceptor pyranone dyads was demonstrated by fabrication of solution-processed OLEDs. Remarkably, OLED devices prepared using highly emissive compounds 6-(anthracen-9-yl)-4-(methylthio)-2-oxo-2 H-pyran-3-carbonitrile (3m) and 6-(4-methoxyphenyl)-4-(methylthio)-2-oxo-2 H-pyran-3-carbonitrile (3f) displayed pure white emission with CIE coordinates of (0.29, 0.31) and (0.32, 0.32), respectively. Additionally, the resultant devices exhibited external quantum efficiencies of 1.9 and 1.2% at 100 cd m-2, respectively.

17.
J Org Chem ; 82(21): 11512-11523, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29019241

RESUMEN

New benzothiadiazole-based materials containing methyl substitution are prepared and characterized as promising green/yellowish green emitters for electroluminescent applications. The dyes exhibited shorter wavelength absorption and emission when compared to nonmethylated dyes. A dye containing methyl group on the donor side exhibited blue shift in absorption and emission when compared to the analogous dye containing methyl group away from donor. The steric effect exerted by the methyl group is responsible for the nonplanar arrangement of donor and acceptor, which inhibited the intramolecular charge transfer. All the dyes displayed solvatochromism in the emission spectra characteristic of hybridization of local and charge transfer excited states. Due to the benefit of methyl group, the dyes restrained the formation of aggregates in the solid state. Solution processed multilayered OLED device were fabricated employing these compounds either as host emitters or dopant emitters in suitable host matrix and exhibited green/yellowish green electroluminescence with external quantum efficiency as high as 4.6% (15.7 cd A-1).

18.
Nanotechnology ; 27(29): 295706, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27299660

RESUMEN

Dependences of gas-barrier performance on the deposition temperature of atomic-layer-deposited (ALD) Al2O3, HfO2, and ZnO films were studied to establish low-temperature ALD processes for encapsulating organic light-emitting diodes (OLEDs). By identifying and controlling the key factors, i.e. using H2O2 as an oxidant, laminating Al2O3 with HfO2 or ZnO layers into AHO or AZO nanolaminates, and extending purge steps, OLED-acceptable gas-barrier performance (water vapor transmission rates ∼ 10-6 g m-2 d-1) was achieved for the first time at a low deposition temperature of 50 °C in a thermal ALD mode. The compatibility of the low-temperature ALD process with OLEDs was confirmed by applying the process to encapsulate different types of OLED devices, which were degradation-free upon encapsulation and showed adequate lifetime during accelerated aging tests (pixel shrinkage <5% after 240 h at 60 °C/90% RH).

19.
Opt Express ; 23(11): A576-81, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072882

RESUMEN

Increasing studies report blue light to possess a potential hazard to the retina of human eyes, secretion of melatonin and artworks. To devise a human- and artwork-friendly light source and to also trigger a "Lighting Renaissance", we demonstrate here how to enable a quality, blue-hazard free general lighting source on the basis of low color-temperature organic light emitting diodes. With the use of multiple candlelight complementary emitters, the sensationally warm candle light-style emission is proven to be also drivable by electricity. To be energy-saving, highly efficient candle-light emission is demanded. The device shows, at 100 cd m-2 for example, an efficacy of 85.4 lm W-1, an external quantum efficiency of 27.4%, with a 79 spectrum resemblance index and 2,279 K color temperature. The high efficiency may be attributed to the candlelight emitting dyes with a high quantum yield, and the host molecules facilitating an effective host-to-guest energy transfer, as well as effective carrier injection balance.


Asunto(s)
Electrónica/instrumentación , Luz , Iluminación/instrumentación , Color , Nanopartículas/química , Temperatura
20.
J Org Chem ; 80(11): 5812-23, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25951296

RESUMEN

A series of thienylphenothiazine decorated carbazoles were synthesized and characterized by optical, electrochemical, thermal, and theoretical investigations. Absorption spectra of the compounds are influenced by the substitution pattern and chromophore number density. Compounds containing 2,7-substitution exhibited red-shifted absorption, while the chromophore loading on the other positions led to the increment in molar extinction coefficients due to the increase in the chromophore density. Multiple substitutions resulted in twisting of chromophores and affected the conjugative delocalization of the π-electrons, which produced shorter wavelength absorption for the 2,3,6,7-tetrasubstituted derivative. Interestingly, the compounds exhibited excited-state solvatochromism attributable to the structural reorganization-induced electronic perturbations. The solvatochromic data are supportive of a general solvent effect, which is further confirmed by Lippert-Mataga correlation. End-capping with butterfly shaped phenothiazine restrained the formation of molecular aggregates in the solid state. All of the compounds displayed exceptional thermal stability attributable to the rigid carbazole building block. Solution processed OLED fabricated using the new materials as emitting dopants in 4,4'-bis(9H-carbazol-9-yl)biphenyl host exhibited bluish green electroluminescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA