Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Plant Cell ; 36(9): 3584-3610, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38842420

RESUMEN

Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.


Asunto(s)
Diatomeas , Gluconeogénesis , Glucólisis , Plastidios , Diatomeas/metabolismo , Diatomeas/genética , Plastidios/metabolismo , Plastidios/genética , Glucólisis/genética , Gluconeogénesis/genética , Filogenia
2.
Plant Cell ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383259

RESUMEN

Diatoms derive from a secondary endosymbiosis event, which occurred when a eukaryotic host cell engulfed a red alga. This led to the formation of a complex plastid enclosed by four membranes: two innermost membranes originating from the red alga chloroplast envelope, and two additional peri- and epiplastidial membranes (PPM, EpM). The EpM is linked to the endoplasmic reticulum (ER). The most abundant membrane lipid in diatoms is monogalactosyldiacylglycerol (MGDG), synthesized by galactosyltransferases called MGDG synthases (MGDs), conserved in photosynthetic eukaryotes and considered to be specific to chloroplast membranes. Similar to angiosperms, a multigenic family of MGDs has evolved in diatoms, but through an independent process. We characterized MGDα, MGDß and MGDγ in Phaeodactylum tricornutum, combining molecular analyses, heterologous expression in Saccharomyces cerevisiae, and studying overexpressing and CRISPR-Cas9-edited lines. MGDα localizes mainly to thylakoids, MGDß to the PPM, and MGDγ to the ER and EpM. MGDs have distinct specificities for diacylglycerol, consistent with their localization. Results suggest that MGDα is required for thylakoid expansion under optimal conditions, while MGDß and MGDγ play roles in plastid and non-plastid membranes and in response to environmental stress. Functional compensation among MGDs likely contributes to diatom resilience under adverse conditions and to their ecological success.

3.
Plant Physiol ; 194(2): 1024-1040, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37930282

RESUMEN

In the acyl-CoA-independent pathway of triacylglycerol (TAG) synthesis unique to plants, fungi, and algae, TAG formation is catalyzed by the enzyme phospholipid:diacylglycerol acyltransferase (PDAT). The unique PDAT gene of the model diatom Phaeodactylum tricornutum strain CCMP2561 boasts 47 single nucleotide variants within protein coding regions of the alleles. To deepen our understanding of TAG synthesis, we observed the allele-specific expression of PDAT by the analysis of 87 published RNA-sequencing (RNA-seq) data and experimental validation. The transcription of one of the two PDAT alleles, Allele 2, could be specifically induced by decreasing nitrogen concentrations. Overexpression of Allele 2 in P. tricornutum substantially enhanced the accumulation of TAG by 44% to 74% under nutrient stress; however, overexpression of Allele 1 resulted in little increase of TAG accumulation. Interestingly, a more serious growth inhibition was observed in the PDAT Allele 1 overexpression strains compared with Allele 2 counterparts. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that enzymes encoded by PDAT Allele 2 but not Allele 1 had TAG biosynthetic activity, and 7 N-terminal and 3 C-terminal amino acid variants between the 2 allele-encoded proteins substantially affected enzymatic activity. P. tricornutum PDAT, localized in the innermost chloroplast membrane, used monogalactosyldiacylglycerol and phosphatidylcholine as acyl donors as demonstrated by the increase of the 2 lipids in PDAT knockout lines, which indicated a common origin in evolution with green algal PDATs. Our study reveals unequal roles among allele-encoded PDATs in mediating carbon storage and growth in response to nitrogen stress and suggests an unsuspected strategy toward lipid and biomass improvement for biotechnological purposes.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Diatomeas , Diacilglicerol O-Acetiltransferasa/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Alelos , Especificidad por Sustrato , Plantas/metabolismo , Fosfolípidos , Nitrógeno , Triglicéridos/metabolismo
4.
Plant Physiol ; 196(2): 1356-1373, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38796833

RESUMEN

Recent global marine lipidomic analysis reveals a strong relationship between ocean temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In phytoplanktonic organisms, EPA may play a major role in regulating the phase transition temperature of membranes, while the function of DHA remains unexplored. In the oleaginous diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, which is very different from the EPA enriched in thylakoid lipids. Here, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9-mediated knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. tricornutum. The ptELO5a mutants showed some alterations in transcriptome and glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature (22 °C), and were more sensitive to elevated temperature (28 °C) than wild type. We conclude that PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA synthesis and lipid composition for environmental adaptation of P. tricornutum.


Asunto(s)
Diatomeas , Ácidos Docosahexaenoicos , Diatomeas/genética , Diatomeas/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Termotolerancia/genética , Metabolismo de los Lípidos/genética
5.
New Phytol ; 241(4): 1543-1558, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38031462

RESUMEN

Lysophosphatidic acid acyltransferases (LPAATs) catalyze the formation of phosphatidic acid (PA), a central metabolite in both prokaryotic and eukaryotic organisms for glycerolipid biosynthesis. Phaeodactylum tricornutum contains at least two plastid-localized LPAATs (ptATS2a and ptATS2b), but their roles in lipid synthesis remain unknown. Both ptATS2a and ptATS2b could complement the high temperature sensitivity of the bacterial plsC mutant deficient in LPAAT. In vitro enzyme assays showed that they prefer lysophosphatidic acid over other lysophospholipids. ptATS2a is localized in the plastid inner envelope membrane and CRISPR/Cas9-generated ptATS2a mutants showed compromised cell growth, significantly changed plastid and extra-plastidial membrane lipids at nitrogen-replete condition and reduced triacylglycerols (TAGs) under nitrogen-depleted condition. ptATS2b is localized in thylakoid membranes and its knockout led to reduced growth rate and TAG content but slightly altered molecular composition of membrane lipids. The changes in glycerolipid profiles are consistent with the role of both LPAATs in the sn-2 acylation of sn-1-acyl-glycerol-3-phosphate substrates harboring 20:5 at the sn-1 position. Our findings suggest that both LPAATs are important for membrane lipids and TAG biosynthesis in P. tricornutum and further highlight that 20:5-Lyso-PA is likely involved in the massive import of 20:5 back to the plastid to feed plastid glycerolipid syntheses.


Asunto(s)
Aciltransferasas , Lípidos de la Membrana , Triglicéridos , Aciltransferasas/metabolismo , Plastidios/metabolismo , Ácidos Fosfatidicos , Nitrógeno
6.
J Exp Bot ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995052

RESUMEN

Upon abiotic stress or senescence, the size and/or abundancy of plastid-localized plastoglobules and cytosolic lipid droplets, both compartments devoted to neutral lipid storage, increase in leaves. Meanwhile, plant lipid metabolism is also perturbed, notably with the degradation of thylakoidal monogalactosyldiacylglycerol (MGDG) and the accumulation of neutral lipids. Although these mechanisms are probably linked, they have never been jointly studied, and the respective roles of plastoglobules and lipid droplets in the plant response to stress are totally unknown. To address this question, we determined and compared the glycerolipid composition of both lipid droplets and plastoglobules, followed their formation in response to nitrogen starvation and studied the kinetics of lipid metabolism in Arabidopsis leaves. Our results demonstrated that plastoglobules preferentially store phytyl-esters, while triacylglycerols (TAGs) and steryl-esters accumulated within lipid droplets. Thanks to a pulse chase labeling approach and lipid analyses of fatty acid desaturase 2 (fad2) mutant, we showed that MGDG-derived C18:3 fatty acids were exported to lipid droplets, while MGDG-derived C16:3 fatty acids were stored within plastoglobules. The export of lipids from plastids to lipid droplets was likely facilitated by the physical contact occurring between both organelles, as demonstrated by our electron tomography study. The accumulation of lipid droplets and neutral lipids was transient, suggesting that stress-induced TAGs were remobilized during the plant recovery phase by a mechanism that remains to be explored.

7.
BMC Biol ; 21(1): 275, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017456

RESUMEN

BACKGROUND: Many organisms rely on mineral nutrients taken directly from the soil or aquatic environment, and therefore, developed mechanisms to cope with the limitation of a given essential nutrient. For example, photosynthetic cells have well-defined responses to phosphate limitation, including the replacement of cellular membrane phospholipids with non-phosphorous lipids. Under phosphate starvation, phospholipids in extraplastidial membranes are replaced by betaine lipids in microalgae. In higher plants, the synthesis of betaine lipid is lost, driving plants to other strategies to cope with phosphate starvation where they replace their phospholipids by glycolipids. RESULTS: The aim of this work was to evaluate to what extent betaine lipids and PC lipids share physicochemical properties and could substitute for each other. By neutron diffraction experiments and dynamic molecular simulation of two synthetic lipids, the dipalmitoylphosphatidylcholine (DPPC) and the dipalmitoyl-diacylglyceryl-N,N,N-trimethylhomoserine (DP-DGTS), we found that DP-DGTS bilayers are thicker than DPPC bilayers and therefore are more rigid. Furthermore, DP-DGTS bilayers are more repulsive, especially at long range, maybe due to unexpected unscreened electrostatic contribution. Finally, DP-DGTS bilayers could coexist in the gel and fluid phases. CONCLUSION: The different properties and hydration responses of PC and DGTS provide an explanation for the diversity of betaine lipids observed in marine organisms and for their disappearance in seed plants.


Asunto(s)
Betaína , Membrana Dobles de Lípidos , Triglicéridos , Fosfolípidos , Semillas , Fosfatos
8.
Plant Cell Physiol ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37944070

RESUMEN

An effect of climate change is the expansion of drylands in temperate regions, predicted to affect microbial biodiversity. Photosynthetic organisms being at the base of ecosystem's trophic networks, we compared an endolithic desiccation-tolerant Chroococcidiopsis cyanobacteria isolated from gypsum rocks in the Atacama Desert, with a freshwater desiccation-sensitive Synechocystis. We sought whether some acclimation traits in response to desiccation and temperature variations were shared, to evaluate the potential of temperate species to possibly become resilient to future arid conditions. When temperature varies, Synechocystis tunes the acyl composition of its lipids, via a homeoviscuous acclimation mechanism known to adjust membrane fluidity, whereas no such change occurs in Chroococcidiopsis. Vice versa, a combined study of photosynthesis and pigment content shows that Chroococcidiopsis remodels its photosynthesis components and keeps an optimal photosynthetic capacity at all temperatures, whereas Synechocystis is unable to such adjustment. Upon desiccation on a gypsum surface, Synechocystis is rapidly unable to revive, whereas Chroococcidiopsis is capable to recover after three weeks. Using X-ray diffraction, we found no evidence that Chroococcidiopsis could use water extracted from gypsum crystal in such conditions, as a surrogate of missing water. The sulfolipid sulfoquinovosyldiacylglycerol becomes the prominent membrane lipid in both dehydrated cyanobacteria, highlighting an overlooked function for this lipid. Chroococcidiopsis keeps a minimal level of monogalactosyldiacylglycerol, which may be essential for the recovery process. Results support that two independent adaptation strategies have evolved in these species to cope with temperature and desiccation increase, and suggest some possible scenarios for microbial biodiversity change triggered by climate change.

9.
Plant J ; 106(5): 1247-1259, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33725374

RESUMEN

The unicellular marine diatom Phaeodactylum tricornutum accumulates up to 35% eicosapentaenoic acid (EPA, 20:5n3) and has been used as a model organism to study long chain polyunsaturated fatty acids (LC-PUFA) biosynthesis due to an excellent annotated genome sequence and established transformation system. In P. tricornutum, the majority of EPA accumulates in polar lipids, particularly in galactolipids such as mono- and di-galactosyldiacylglycerol. LC-PUFA biosynthesis is considered to start from oleic acid (18:1n9). EPA can be synthesized via a series of desaturation and elongation steps occurring at the endoplasmic reticulum and newly synthesized EPA is then imported into the plastids for incorporation into galactolipids via an unknown route. The basis for the flux of EPA is fundamental to understanding LC-PUFA biosynthesis in diatoms. We used P. tricornutum to study acyl modifying activities, upstream of 18:1n9, on subsequent LC-PUFA biosynthesis. We identified the gene coding for the plastidial acyl carrier protein Δ9-desaturase, a key enzyme in fatty acid modification and analyzed the impact of overexpression and knock out of this gene on glycerolipid metabolism. This revealed a previously unknown role of this soluble desaturase in EPA synthesis and production of triacylglycerol. This study provides further insight into the distinctive nature of lipid metabolism in the marine diatom P. tricornutum and suggests additional approaches for tailoring oil composition in microalgae.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Diatomeas/metabolismo , Ácido Eicosapentaenoico/biosíntesis , Ácido Graso Desaturasas/metabolismo , Metabolismo de los Lípidos , Triglicéridos/metabolismo , Proteína Transportadora de Acilo/genética , Vías Biosintéticas , Diatomeas/genética , Ácido Graso Desaturasas/genética , Técnicas de Inactivación de Genes , Microalgas , Plastidios/enzimología
10.
New Phytol ; 233(4): 1797-1812, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34882804

RESUMEN

Long-chain acyl-CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil-producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1-ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl-CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.


Asunto(s)
Diatomeas , Sistemas CRISPR-Cas/genética , Coenzima A/genética , Coenzima A/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo
11.
Plant Physiol ; 185(3): 815-835, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793914

RESUMEN

The metabolic pathways of glycerolipids are well described in cells containing chloroplasts limited by a two-membrane envelope but not in cells containing plastids limited by four membranes, including heterokonts. Fatty acids (FAs) produced in the plastid, palmitic and palmitoleic acids (16:0 and 16:1), are used in the cytosol for the synthesis of glycerolipids via various routes, requiring multiple acyl-Coenzyme A (CoA) synthetases (ACS). Here, we characterized an ACS of the Bubblegum subfamily in the photosynthetic eukaryote Microchloropsis gaditana, an oleaginous heterokont used for the production of lipids for multiple applications. Genome engineering with TALE-N allowed the generation of MgACSBG point mutations, but no knockout was obtained. Point mutations triggered an overall decrease of 16:1 in lipids, a specific increase of unsaturated 18-carbon acyls in phosphatidylcholine and decrease of 20-carbon acyls in the betaine lipid diacylglyceryl-trimethyl-homoserine. The profile of acyl-CoAs highlighted a decrease in 16:1-CoA and 18:3-CoA. Structural modeling supported that mutations affect accessibility of FA to the MgACSBG reaction site. Expression in yeast defective in acyl-CoA biosynthesis further confirmed that point mutations affect ACSBG activity. Altogether, this study supports a critical role of heterokont MgACSBG in the production of 16:1-CoA and 18:3-CoA. In M. gaditana mutants, the excess saturated and monounsaturated FAs were diverted to triacylglycerol, thus suggesting strategies to improve the oil content in this microalga.


Asunto(s)
Coenzima A Ligasas/metabolismo , Cianobacterias/genética , Cianobacterias/fisiología , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Fotosíntesis/fisiología , Coenzima A Ligasas/genética
12.
Photosynth Res ; 153(1-2): 71-82, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35389175

RESUMEN

The redox state of the plastoquinone (PQ) pool is a known sensor for retrograde signaling. In this paper, we asked, "does the redox state of the PQ pool modulate the saturation state of thylakoid lipids?" Data from fatty acid composition and mRNA transcript abundance analyses suggest a strong connection between these two aspects in a model marine diatom. Fatty acid profiles of Phaeodactylum tricornutum exhibited specific changes when the redox state of the PQ pool was modulated by light and two chemical inhibitors [3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)]. Data from liquid chromatography with tandem mass spectrometry (LC-MS/MS) indicated a ca. 7-20% decrease in the saturation state of all four conserved thylakoid lipids in response to an oxidized PQ pool. The redox signals generated from an oxidized PQ pool in plastids also increased the mRNA transcript abundance of nuclear-encoded C16 fatty acid desaturases (FADs), with peak upregulation on a timescale of 6 to 12 h. The connection between the redox state of the PQ pool and thylakoid lipid saturation suggests a heretofore unrecognized retrograde signaling pathway that couples photosynthetic electron transport and the physical state of thylakoid membrane lipids.


Asunto(s)
Diatomeas , Plastoquinona , Benzoquinonas , Cromatografía Liquida , Diatomeas/metabolismo , Dibromotimoquinona/metabolismo , Diurona/farmacología , Transporte de Electrón , Ácido Graso Desaturasas/análisis , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/análisis , Luz , Lípidos , Oxidación-Reducción , Plastoquinona/metabolismo , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem , Tilacoides/metabolismo
13.
J Lipid Res ; 62: 100059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33647276

RESUMEN

Cholesterol is a major component of mammalian plasma membranes that not only affects the physical properties of the lipid bilayer but also is the function of many membrane proteins including G protein-coupled receptors. The oxytocin receptor (OXTR) is involved in parturition and lactation of mammals and in their emotional and social behaviors. Cholesterol acts on OXTR as an allosteric modulator inducing a high-affinity state for orthosteric ligands through a molecular mechanism that has yet to be determined. Using the ion channel-coupled receptor technology, we developed a functional assay of cholesterol modulation of G protein-coupled receptors that is independent of intracellular signaling pathways and operational in living cells. Using this assay, we discovered a stable binding of cholesterol molecules to the receptor when it adopts an orthosteric ligand-bound state. This stable interaction preserves the cholesterol-dependent activity of the receptor in cholesterol-depleted membranes. This mechanism was confirmed using time-resolved FRET experiments on WT OXTR expressed in CHO cells. Consequently, a positive cross-regulation sequentially occurs in OXTR between cholesterol and orthosteric ligands.


Asunto(s)
Receptores Acoplados a Proteínas G
14.
Plant Physiol ; 184(1): 82-96, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32669420

RESUMEN

Eukaryotic Δ6-desaturases are microsomal enzymes that balance the synthesis of ω-3 and ω-6 C18-polyunsaturated fatty acids (C18-PUFAs) according to their specificity. In several microalgae, including Ostreococcus tauri, plastidic C18-PUFAs are strictly regulated by environmental cues suggesting an autonomous control of Δ6-desaturation of plastidic PUFAs. Here, we identified two putative front-end Δ6/Δ8-desaturases from O tauri that, together with putative homologs, cluster apart from other characterized Δ6-desaturases. Both were plastid-located and unambiguously displayed a Δ6-desaturation activity when overexpressed in the heterologous hosts Nicotiana benthamiana and Synechocystis sp. PCC6803, as in the native host. Detailed lipid analyses of overexpressing lines unveiled distinctive ω-class specificities, and most interestingly pointed to the importance of the lipid head-group and the nonsubstrate acyl-chain for the desaturase efficiency. One desaturase displayed a broad specificity for plastidic lipids and a preference for ω-3 substrates, while the other was more selective for ω-6 substrates and for lipid classes including phosphatidylglycerol as well as the peculiar 16:4-galactolipid species occurring in the native host. Overexpression of both Δ6-desaturases in O tauri prevented the regulation of C18-PUFA under phosphate deprivation and triggered glycerolipid fatty-acid remodeling, without causing any obvious alteration in growth or photosynthesis. Tracking fatty-acid modifications in eukaryotic hosts further suggested the export of plastidic lipids to extraplastidic compartments.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Plastidios/genética , Plastidios/metabolismo , Especificidad por Sustrato , Nicotiana/genética , Nicotiana/metabolismo
15.
New Phytol ; 225(6): 2380-2395, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31598973

RESUMEN

Phosphorus (P) is one of the limiting macronutrients for algal growth in marine environments. Microalgae have developed adaptation mechanisms to P limitation that involve remodelling of internal phosphate resources and accumulation of lipids. Here, we used in silico analyses to identify the P-stress regulator PtPSR (Phaeodactylum tricornutum phosphorus starvation response) in the diatom P. tricornutum. ptpsr mutant lines were generated using gene editing and characterised by various molecular, genetics and biochemical tools. PtPSR belongs to a clade of Myb transcription factors that are conserved in stramenopiles and distantly related to plant P-stress regulators. PtPSR bound specifically to a conserved cis-regulatory element found in the regulatory region of P-stress-induced genes. ptpsr knockout mutants showed reduction in cell growth under P limitation. P-stress responses were impaired in ptpsr mutants compared with wild-type, including reduced induction of P-stress response genes, near to complete loss of alkaline phosphatase activity and reduced phospholipid degradation. We conclude that PtPSR is a key transcription factor influencing P scavenging, phospholipid remodelling and cell growth in adaptation to P stress in diatoms.


Asunto(s)
Diatomeas , Microalgas , Estramenopilos , Diatomeas/genética , Microalgas/genética , Fósforo , Factores de Transcripción/genética
16.
New Phytol ; 225(6): 2396-2410, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31591719

RESUMEN

The wide latitudinal distribution of marine Synechococcus cyanobacteria partly relies on the differentiation of lineages adapted to distinct thermal environments. Membranes are highly thermosensitive cell components, and the ability to modulate their fluidity can be critical for the fitness of an ecotype in a particular thermal niche. We compared the thermophysiology of Synechococcus strains representative of major temperature ecotypes in the field. We measured growth, photosynthetic capacities and membrane lipidome variations. We carried out a metagenomic analysis of stations of the Tara Oceans expedition to describe the latitudinal distribution of the lipid desaturase genes in the oceans. All strains maintained efficient photosynthetic capacities over their different temperature growth ranges. Subpolar and cold temperate strains showed enhanced capacities for lipid monodesaturation at low temperature thanks to an additional, poorly regiospecific Δ9-desaturase. By contrast, tropical and warm temperate strains displayed moderate monodesaturation capacities but high proportions of double unsaturations in response to cold, thanks to regiospecific Δ12-desaturases. The desaturase genes displayed specific distributions directly related to latitudinal variations in ocean surface temperature. This study highlights the critical importance of membrane fluidity modulation by desaturases in the adaptive strategies of Synechococcus cyanobacteria during the colonization of novel thermal niches.


Asunto(s)
Agua de Mar , Synechococcus , Regulación de la Temperatura Corporal , Océanos y Mares , Filogenia , Synechococcus/genética
17.
Plant Cell Physiol ; 60(6): 1260-1273, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753691

RESUMEN

Jasmonic acid (JA) biosynthesis and signaling are activated in Arabidopsis cultivated in phosphate (Pi) deprived conditions. This activation occurs mainly in photosynthetic tissues and is less important in roots. In leaves, the enhanced biosynthesis of JA coincides with membrane glycerolipid remodeling triggered by the lack of Pi. We addressed the possible role of JA on the dynamics and magnitude of glycerolipid remodeling in response to Pi deprivation and resupply. Based on combined analyses of gene expression, JA biosynthesis and glycerolipid remodeling in wild-type Arabidopsis and in the coi1-16 mutant, JA signaling seems important in the determination of the basal levels of phosphatidylcholine, phosphatidic acid (PA), monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol. JA impact on MGDG steady state level and fluctuations seem contradictory. In the coi1-16 mutant, the steady state level of MGDG is higher, possibly due to a higher level of PA in the mutant, activating MGD1, and to an increased expression of MGD3. These results support a possible impact of JA in limiting the overall content of this lipid. Concerning lipid variations, upon Pi deprivation, JA seems rather associated with a specific MGDG increase. Following Pi resupply, whereas the expression of glycerolipid remodeling genes returns to basal level, JA biosynthesis and signaling genes are still upregulated, likely due to a JA-induced positive feedback remaining active. Distinct impacts on enzymes synthesizing MGDG, that is, downregulating MGD3, possibly activating MGD1 expression and limiting the activation of MGD1 via PA, might allow JA playing a role in a sophisticated fine tuning of galactolipid variations.


Asunto(s)
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Glucolípidos/metabolismo , Oxilipinas/metabolismo , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis , Transducción de Señal
18.
Plant Physiol ; 177(2): 532-552, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29535162

RESUMEN

Microalgae are a promising feedstock for the production of triacylglycerol (TAG) for a variety of potential applications, ranging from food and human health to biofuels and green chemistry. However, obtaining high TAG yields is challenging. A phenotypic assay for the accumulation of oil droplets was developed to screen a library of 1,200 drugs, annotated with pharmacology information, to select compounds that trigger TAG accumulation in the diatom Phaeodactylum tricornutum Using this screen, we identified 34 molecules acting in a dose-dependent manner. Previously characterized targets of these compounds include cell division and cell signaling effectors, membrane receptors and transporters, and sterol metabolism. Among the five compounds possibly acting on sterol metabolism, we focused our study on ethynylestradiol, a synthetic form of estrogen that is used in contraceptive pills and known for its ecological impact as an endocrine disruptor. Ethynylestradiol impaired the production of very-long-chain polyunsaturated fatty acids, destabilized the galactolipid versus phospholipid balance, and triggered the recycling of fatty acids from membrane lipids to TAG. The P. tricornutum transcriptomic response to treatment with ethynylestradiol was consistent with the reallocation of carbon from sterols to acetyl-coenzyme A and TAG. The mode of action and catabolism of ethynylestradiol are unknown but might involve several up-regulated cytochrome P450 proteins. A fatty acid elongase, Δ6-ELO-B1, might be involved in the impairment of very-long-chain polyunsaturated fatty acids and fatty acid turnover. This phenotypic screen opens new perspectives for the exploration of novel bioactive molecules, potential target genes, and pathways controlling TAG biosynthesis. It also unraveled the sensitivity of diatoms to endocrine disruptors, highlighting an impact of anthropogenic pollution on phytoplankton.


Asunto(s)
Productos Biológicos/farmacología , Diatomeas/efectos de los fármacos , Diatomeas/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Triglicéridos/metabolismo , Productos Biológicos/administración & dosificación , Diatomeas/genética , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Estrona/farmacología , Etinilestradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos
19.
Plant Physiol ; 178(3): 1344-1357, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30237205

RESUMEN

The ecological success of diatoms requires a remarkable ability to survive many types of stress, including variations in temperature, light, salinity, and nutrient availability. On exposure to these stresses, diatoms exhibit common responses, including growth arrest, impairment of photosynthesis, production of reactive oxygen species, and accumulation of triacylglycerol (TAG). We studied the production of cyclopentane oxylipins derived from fatty acids in the diatom Phaeodactylum tricornutum in response to oxidative stress. P. tricornutum lacks the enzymatic pathway for producing cyclopentane-oxylipins, such as jasmonate, prostaglandins, or thromboxanes. In cells subjected to increasing doses of hydrogen peroxide (H2O2), we detected nonenzymatic production of isoprostanoids, including six phytoprostanes, three F2t-isoprostanes, two F3t-isoprostanes, and three F4t-neuroprostanes, by radical peroxidation of α-linolenic, arachidonic, eicosapentaenoic, and docosahexanoic acids, respectively. H2O2 also triggered photosynthesis impairment and TAG accumulation. F1t-phytoprostanes constitute the major class detected (300 pmol per 1 million cells; intracellular concentration, ∼4 µm). Only two glycerolipids, phosphatidylcholine and diacylglycerylhydroxymethyl-trimethyl-alanine, could provide all substrates for these isoprostanoids. Treatment of P. tricornutum with nine synthetic isoprostanoids produced an effect in the micromolar range, marked by the accumulation of TAG and reduced growth, without affecting photosynthesis. Therefore, the emission of H2O2 and free radicals upon exposure to stresses can lead to glycerolipid peroxidation and nonenzymatic synthesis of isoprostanoids, inhibiting growth and contributing to the induction of TAG accumulation via unknown processes. This characterization of nonenzymatic oxylipins in P. tricornutum opens a field of research on the study of processes controlled by isoprostanoid signaling in various physiological and environmental contexts in diatoms.


Asunto(s)
Diatomeas/fisiología , Ácidos Grasos/metabolismo , Peróxido de Hidrógeno/administración & dosificación , Oxilipinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ciclopentanos/metabolismo , Diatomeas/efectos de los fármacos , Isoprostanos/metabolismo , Estrés Oxidativo , Fotosíntesis
20.
Environ Microbiol ; 20(8): 3057-3068, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29968288

RESUMEN

Aurantiochytrium limacinum is an osmo-heterotrophic Stramenopile and a pioneering mangrove decomposer which is taxonomically assigned to the family of Thraustochytriaceae (class: Labyrinthulomycetes). The life cycle of A. limacinum involves different cell types including mono- and multi-nucleated cells as well as flagellated zoospores which colonize new fallen leaves. The ecological relevance of thraustochytrids is underestimated and eclipsed by their biotechnological importance, due to their ability to accumulate large amount of lipids, mainly triacylglycerols (TAGs). In this study, we aimed to understand the ecophysiological parameters that trigger zoospore production and the interplay between the life cycle of A. limacinum and its lipid metabolism. When grown in a rich medium, cells accumulated large amounts of TAGs at the end of their growth period, but no zoospores were produced. In poor media such as artificial sea water, zoospores were produced in massive quantities. In the absence of organic carbon, the zoospores remained swimming for at least 6 days, consuming their TAGs in the process. Addition of glucose rapidly triggered the maturation of the zoospores. On the basis of these data, we propose a life cycle for A. limacinum integrating the potential perturbations/changes in the environment surrounding a mangrove leaf that could lead to the production of zoospores and colonization of new areas.


Asunto(s)
Lípidos/química , Estramenopilos/metabolismo , Biodegradación Ambiental , Medios de Cultivo/metabolismo , Ecología , Glucosa/metabolismo , Metabolismo de los Lípidos , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Esporas/química , Esporas/crecimiento & desarrollo , Esporas/metabolismo , Estramenopilos/química , Estramenopilos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA