Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antivir Ther ; 11(7): 847-55, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17302247

RESUMEN

BACKGROUND/AIMS: One of the main issues in the development of antiviral therapy is the emergence of drug-resistant viruses. In the case of hepatitis C virus (HCV), selection of drug-resistant mutants was evidenced by in vitro studies on protease inhibitors (PIs); for example, BILN-2061, VX-950 and SCH-6. Four mutations in the HCV protease (R155Q, A156T, D168A and D168V) have been identified in vitro in the HCV replicon system that confer resistance to BILN-2061 (a reference inhibitor). However, the molecular mechanism of drug resistance is still unknown. The aim of this study is to unravel, using an molecular modelling strategy, the structural basis of such molecular mechanism of HCV resistance to PIs. We focused on protease mutations conferring HCV resistance to BILN-2061 and described for the first time such mechanism at a molecular level. METHODS: The structures of drug-resistant NS3 proteases were obtained by mutation of selected residues (R155Q, A156T, D168A and D168V) and the ternary complexes formed between NS3-4A and BILN-2061 were optimized using GenMol software (www.3dgenoscience.com; Genoscience, Marseille, France). RESULTS: Two mechanisms were evidenced for viral resistance to BILN-2061. A 'direct' resistance mechanism is based on contacts between the mutated R155Q and A156T protease residues and its inhibitor. In the 'indirect' resistance mechanism, the mutated D168A/V residue is not in close contact with the drug itself but interacts with other residues connected to the drug. CONCLUSIONS: These data provide new insights in the understanding of the mechanisms of HCV drug escape, and may allow predicting potential cross-resistance phenomenon with other PIs. This approach can be used as a basis for future rational PI drug design candidates.


Asunto(s)
Carbamatos/farmacología , Hepacivirus/efectos de los fármacos , Compuestos Macrocíclicos/farmacología , Modelos Moleculares , Quinolinas/farmacología , Tiazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Sitios de Unión/genética , Carbamatos/química , Farmacorresistencia Viral , Hepacivirus/enzimología , Compuestos Macrocíclicos/química , Mutación Puntual , Quinolinas/química , Serina Endopeptidasas/química , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/genética , Tiazoles/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas no Estructurales Virales/genética
2.
Biochem J ; 378(Pt 3): 717-26, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-14674883

RESUMEN

Animal toxins acting on ion channels of excitable cells are principally highly potent short peptides that are present in limited amounts in the venoms of various unrelated species, such as scorpions, snakes, sea anemones, spiders, insects, marine cone snails and worms. These toxins have been used extensively as invaluable biochemical and pharmacological tools to characterize and discriminate between the various ion channel types that differ in ionic selectivity, structure and/or cell function. Alongside the huge molecular and functional diversity of ion channels, a no less impressive structural diversity of animal toxins has been indicated by the discovery of an increasing number of polypeptide folds that are able to target these ion channels. Indeed, it appears that these peptide toxins have evolved over time on the basis of clearly distinct architectural motifs, in order to adapt to different ion channel modulating strategies (pore blockers compared with gating modifiers). Herein, we provide an up-to-date overview of the various types of fold from animal toxins that act on ion channels selective for K+, Na+, Ca2+ or Cl- ions, with special emphasis on disulphide bridge frameworks and structural motifs associated with these peptide folds.


Asunto(s)
Canales Iónicos/antagonistas & inhibidores , Toxinas Biológicas/química , Secuencia de Aminoácidos , Animales , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Canales de Cloruro/antagonistas & inhibidores , Secuencia de Consenso , Disulfuros/análisis , Modelos Moleculares , Datos de Secuencia Molecular , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Pliegue de Proteína , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Toxinas Biológicas/farmacología
3.
Biochem J ; 377(Pt 1): 37-49, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14498829

RESUMEN

CoTX1 (cobatoxin 1) is a 32-residue toxin with three disulphide bridges that has been isolated from the venom of the Mexican scorpion Centruroides noxius Hoffmann. Here we report the chemical synthesis, disulphide bridge organization, 3-D (three-dimensional) solution structure determination, pharmacology on K+ channel subtypes (voltage-gated and Ca2+-activated) and docking-simulation experiments. An enzyme-based cleavage of the synthetic folded/oxidized CoTX1 indicated half-cystine pairs between Cys3-Cys22, Cys8-Cys27 and Cys12-Cys29. The 3-D structure of CoTX1 (solved by 1H-NMR) showed that it folds according to the common alpha/beta scaffold of scorpion toxins. In vivo, CoTX1 was lethal after intracerebroventricular injection to mice (LD50 value of 0.5 microg/mouse). In vitro, CoTX1 tested on cells expressing various voltage-gated or Ca2+-activated (IKCa1) K+ channels showed potent inhibition of currents from rat K(v)1.2 ( K(d) value of 27 nM). CoTX1 also weakly competed with 125I-labelled apamin for binding to SKCa channels (small-conductance Ca2+-activated K+ channels) on rat brain synaptosomes (IC50 value of 7.2 microM). The 3-D structure of CoTX1 was used in docking experiments which suggests a key role of Arg6 or Lys10, Arg14, Arg18, Lys21 (dyad), Ile23, Asn24, Lys28 and Tyr30 (dyad) residues of CoTX1 in its interaction with the rat K(v)1.2 channel. In addition, a [Pro7,Gln9]-CoTX1 analogue (ACoTX1) was synthesized. The two residue replacements were selected aiming to restore the RPCQ motif in order to increase peptide affinity towards SKCa channels, and to alter the CoTX1 dipole moment such that it is expected to decrease peptide activity on K(v) channels. Unexpectedly, ACoTX1 exhibited an activity similar to that of CoTX1 towards SKCa channels, while it was markedly more potent on IKCa1 and several voltage-gated K+ channels.


Asunto(s)
Bloqueadores de los Canales de Potasio , Canales de Potasio/metabolismo , Venenos de Escorpión , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Dicroismo Circular , Simulación por Computador , Disulfuros/química , Humanos , Canal de Potasio Kv.1.2 , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/química , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas , Venenos de Escorpión/síntesis química , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Venenos de Escorpión/farmacología , Homología de Secuencia de Aminoácido
4.
Toxicon ; 43(6): 661-9, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15109887

RESUMEN

Scorpion stings represent a medical problem in numerous countries. The scorpion Androctonus australis hector produces three alpha toxins (Aah I to III), which are responsible for most of the lethality in mammals. These toxins act on sodium channel and do not cross-react immunologically. We used RIA and ELISA to measure the concentrations of these three toxins in plasma, urine and different organs after i.v. and s.c. injections of water extracts of venoms in rabbits or mice. In both animals, the toxins rapidly appeared in plasma after s.c. injection as it was previously described for the whole venom. However, the toxins disappeared from the blood more quickly than did other main components of the venom. Thus, serotherapy must be initiated immediately to prevent the toxin from reaching its target. We also detected the toxins in urine, kidneys, heart and lungs, but not in the brain. However, the concentration of Aah II was always lower than that of Aah I. Analysis of five samples of venom collected in different areas of southern Tunisia showed that a large polymorphism exists for the three toxins. This is yet another difficulty for serotherapy as there is no cross-antigenicity between them.


Asunto(s)
Neurotoxinas/farmacocinética , Venenos de Escorpión/farmacocinética , Animales , Infusiones Intravenosas , Inyecciones Subcutáneas , Riñón/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Miocardio/metabolismo , Neurotoxinas/administración & dosificación , Conejos , Venenos de Escorpión/administración & dosificación , Distribución Tisular
5.
Toxicon ; 43(8): 909-14, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15208024

RESUMEN

Ion channel-acting toxins are mainly short peptides generally present in minute amounts in the venoms of diverse animal species such as scorpions, snakes, spiders, marine cone snails and sea anemones. Interestingly, these peptides have evolved over time on the basis of clearly distinct architectural motifs present throughout the animal kingdom, but display convergent molecular determinants and functional homologies. As a consequence of this conservation of some key determinants, it has also been evidenced that toxin targets display some common evolutionary origins. Indeed, these peptides often target ion channels and ligand-gated receptors, though other interacting molecules such as enzymes have been further evidenced. In this review, we provide an overview of some selected peptides from various animal species that act on specific K+ conducting voltage-gated ion channels. In particular, we emphasize our global analysis on the structural determinants of these molecules that are required for the recognition of a particular ion channel pore structure, a property that should be correlated to the blocking efficacy of the K+ efflux out of the cell during channel opening. A better understanding of these molecular determinants is valuable to better specify and derive useful peptide pharmacological properties.


Asunto(s)
Péptidos/química , Canales de Potasio/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Modelos Químicos , Conformación Proteica , Relación Estructura-Actividad
6.
Curr Pharm Des ; 14(24): 2503-18, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18781998

RESUMEN

Animal venoms are rich natural sources of bioactive compounds, including peptide toxins acting on the various types of ion channels, i.e. K(+), Na(+), Cl(-) and Ca(2+). Among K+ channel-acting toxins, those selective for voltage-gated K(+) (Kv) channels are widely represented and have been isolated from the venoms of numerous animal species, such as scorpions, sea anemones, snakes, marine cone snails and spiders. The toxins characterized hitherto contain between 22 and 60 amino acid residues, and are cross-linked by two to four disulfide bridges. Depending on their types of fold, toxins can be classified in eight structural categories, which showed a combination of beta-strands, helices, or a mixture of both. The main architectural motifs thereof are referred to as alpha/beta scaffold and inhibitor cystine knot (ICK). A detailed analysis of toxin structures and pharmacological selectivities indicates that toxins exhibiting a similar type of fold can exert their action on several subtypes of Kv channels, whereas a particular Kv channel can be targeted by toxins that possess unrelated folds. Therefore, it appears that the ability of structurally divergent toxins to interact with a particular Kv channel relies onto a similar spatial distribution of amino acid residues that are key to the toxin-channel interaction (rather than the type of toxin fold). The diversity of Kv channel blockers and their therapeutic value in the potential treatment of a number of specific human diseases, especially autoimmune disorders, inflammatory neuropathies and cancer, are reviewed.


Asunto(s)
Diseño de Fármacos , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Ponzoñas/análisis , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/aislamiento & purificación , Péptidos/uso terapéutico , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/fisiología , Conformación Proteica , Alineación de Secuencia
7.
J Pept Sci ; 10(11): 666-77, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15568681

RESUMEN

Aah I is a 63-residue alpha-toxin isolated from the venom of the Buthidae scorpion Androctonus australis hector, which is considered to be the most dangerous species. We report here the first chemical synthesis of Aah I by the solid-phase method, using a Fmoc strategy. The synthetic toxin I (sAah I) was renatured in DMSO-Tris buffer, purified and subjected to thorough analysis and comparison with the natural toxin. The sAah I showed physico-chemical (CD spectrum, molecular mass, HPLC elution), biochemical (amino-acid composition, sequence), immunochemical and pharmacological properties similar to those of the natural toxin. The synthetic toxin was recognized by a conformation-dependent monoclonal anti-Aah I antibody, with an IC50 value close to that for the natural toxin. Following intracerebroventricular injection, the synthetic and the natural toxins were similarly lethal to mice. In voltage-clamp experiments, Na(v) 1.2 sodium channel inactivation was inhibited by the application of sAah I or of the natural toxin in a similar way. This work describes a simple protocol for the chemical synthesis of a scorpion alpha-toxin, making it possible to produce structural analogues in time.


Asunto(s)
Neurotoxinas/síntesis química , Venenos de Escorpión/síntesis química , Escorpiones/patogenicidad , Canales de Sodio/efectos de los fármacos , Fosfolipasas de Tipo C/síntesis química , Animales , Anticuerpos Monoclonales , Afinidad de Anticuerpos , Electrofisiología , Ratones , Neurotoxinas/farmacología , Renaturación de Proteína , Venenos de Escorpión/farmacología , Bloqueadores de los Canales de Sodio , Tasa de Supervivencia , Fosfolipasas de Tipo C/inmunología , Fosfolipasas de Tipo C/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA