RESUMEN
Overexpression of actin-binding protein profilin-1 (Pfn1) correlates with advanced disease features and adverse clinical outcome of patients with clear cell renal carcinoma, the most prevalent form of renal cancer. We previously reported that Pfn1 is predominantly overexpressed in tumor-associated vascular endothelial cells in human clear cell renal carcinoma. In this study, we combined in vivo strategies involving endothelial cell-specific depletion and overexpression of Pfn1 to demonstrate a role of vascular endothelial Pfn1 in promoting tumorigenicity and enabling progressive growth and metastasis of renal carcinoma cells in a syngeneic orthotopic mouse model of kidney cancer. We established an important role of endothelial Pfn1 in tumor angiogenesis and further identified endothelial Pfn1-dependent regulation of several pro- (VEGF, SERPINE1, CCL2) and anti-angiogenic factors (platelet factor 4) in vivo. Endothelial Pfn1 overexpression increases tumor infiltration by macrophages and concomitantly diminishes tumor infiltration by T cells including CD8+ T cells in vivo, correlating with the pattern of endothelial Pfn1-dependent changes in tumor abundance of several prominent immunomodulatory cytokines. These data were also corroborated by multiplexed quantitative immunohistochemistry and immune deconvolution analyses of RNA-seq data of clinical samples. Guided by Upstream Regulator Analysis of tumor transcriptome data, we further established endothelial Pfn1-induced Hif1α elevation and suppression of STAT1 activation. In conclusion, this study demonstrates for the first time a direct causal relationship between vascular endothelial Pfn1 dysregulation, immunosuppressive tumor microenvironment, and disease progression with mechanistic insights in kidney cancer. Our study also provides a conceptual basis for targeting Pfn1 for therapeutic benefit in kidney cancer.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Profilinas , Microambiente Tumoral , Animales , Humanos , Ratones , Carcinoma de Células Renales/genética , Células Endoteliales/metabolismo , Neoplasias Renales/genética , Profilinas/genética , Profilinas/metabolismo , Progresión de la EnfermedadRESUMEN
Megakaryoblastic leukemia (MKL)/serum-response factor (SRF)-mediated gene transcription is a highly conserved mechanism that connects dynamic reorganization of the actin cytoskeleton to regulation of expression of a wide range of genes, including SRF itself and many important structural and regulatory components of the actin cytoskeleton. In this study, we examined the possible role of MKL/SRF in the context of regulation of profilin (Pfn), a major controller of actin dynamics and actin cytoskeletal remodeling in cells. We demonstrated that despite being located on different genomic loci, two major isoforms of Pfn (Pfn1 and Pfn2) are co-regulated by a common mechanism involving the action of MKL that is independent of its SRF-related activity. We found that MKL co-regulates the expression of Pfn isoforms indirectly by modulating signal transducer and activator of transcription 1 (STAT1) and utilizing its SAP-domain function. Unexpectedly, our studies revealed that cellular externalization, rather than transcription of Pfn1, is affected by the perturbations of MKL. We further demonstrated that MKL can influence cell migration by modulating Pfn1 expression, indicating a functional connection between MKL and Pfn1 in actin-dependent cellular processes. Finally, we provide initial evidence supporting the ability of Pfn to influence MKL and SRF expression. Collectively, these findings suggest that Pfn may play a role in a possible feedback loop of the actin/MKL/SRF signaling circuit.
Asunto(s)
Regulación de la Expresión Génica , Profilinas/metabolismo , Factor de Transcripción STAT1/metabolismo , Transactivadores/metabolismo , Línea Celular Tumoral , Movimiento Celular , Células HEK293 , Humanos , Oligopéptidos/genética , Oligopéptidos/metabolismo , Profilinas/genética , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/genética , Factor de Respuesta Sérica/antagonistas & inhibidores , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transactivadores/antagonistas & inhibidores , Transactivadores/genéticaRESUMEN
BACKGROUND: Adhesion-mediated activation of FAK/ERK signalling pathway, enabled by the formation of filopodial protrusions (FLP), has been shown to be an important event for triggering of dormancy-to-proliferation switch and metastatic outgrowth of breast cancer cells (BCC). We studied the role of actin-binding protein profilin1 (Pfn1) in these processes. METHODS: Quantitative immunohistochemistry (IHC) of BC tissue microarray (TMA) and survival analyses of curated transcriptome datasets of BC patients were performed to examine Pfn1's association with certain clinicopathological features. FLP formation and single cell outgrowth of BCC were assessed using a 3D matrigel culture that accurately predicts dormant vs metastatic outgrowth phenotypes of BCC in certain microenvironment. Gene expression studies were performed to identify potential biological pathways that are perturbed under Pfn1-depleted condition. RESULTS: Lower Pfn1 expression is correlated with lower nuclear grade of breast tumours and longer relapse-free survival of BC patients. Pfn1 depletion leads to defects in FLP and outgrowth of BCC but without impairing either FAK or ERK activation. Guided by transcriptome analyses, we further showed that Pfn1 depletion is associated with prominent SMAD3 upregulation. Although knockdown and overexpression experiments revealed that SMAD3 has an inhibitory effect on the outgrowth of breast cancer cells, SMAD3 knockdown alone was not sufficient to enhance the outgrowth potential of Pfn1-depleted BCC suggesting that other proliferation-regulatory pathways in conjunction with SMAD3 upregulation may underlie the outgrowth-deficient phenotype of BCC cells upon depletion of Pfn1. CONCLUSION: Overall, these data suggest that Pfn1 may be a novel biomarker for BC recurrence and a possible target to reduce metastatic outgrowth of BCC.
Asunto(s)
Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula/métodos , Profilinas/deficiencia , Proteína smad3/genética , Regulación hacia Arriba , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Clasificación del Tumor , Pronóstico , Transducción de Señal , Análisis de Supervivencia , Análisis de Matrices Tisulares , Microambiente TumoralRESUMEN
The assembly of the upper jaw is a pivotal moment in the embryonic development of amniotes. The upper jaw forms from the fusion of the maxillary, medial nasal, and lateral nasal prominences, resulting in an intact upper lip/beak and nasal cavities; together called the primary palate. This process of fusion requires a balance of proper facial prominence shape and positioning to avoid craniofacial clefting, whilst still accommodating the vast phenotypic diversity of adult amniotes. As such, variation in craniofacial ontogeny is not tolerated beyond certain bounds. For clarity, we discuss primary palatogenesis of amniotes into in two categories, according to whether the nasal and oral cavities remain connected throughout ontogeny or not. The transient separation of these cavities occurs in mammals and crocodilians, while remaining connected in birds, turtles and squamates. In the latter group, the craniofacial prominences fuse around a persistent choanal groove that connects the nasal and oral cavities. Subsequently, all lineages except for turtles, develop a secondary palate that ultimately completely or partially separates oral and nasal cavities. Here, we review the shared, early developmental events and highlight the points at which development diverges in both primary and secondary palate formation.
Asunto(s)
Fisura del Paladar/embriología , Hueso Paladar/embriología , Animales , Mesodermo/embriologíaRESUMEN
The amniote primary palate encompasses the upper lip and the nasal cavities. During embryonic development, the primary palate forms from the fusion of the maxillary, medial nasal and lateral nasal prominences. In mammals, as the primary palate fuses, the nasal and oral cavities become completely separated. Subsequently, the tissue demarcating the future internal nares (choanae) thins and becomes the bucconasal membrane, which eventually ruptures and allows for the essential connection of the oral and nasal cavities to form. In reptiles (including birds), the other major amniote group, primary palate ontogeny is poorly studied with respect to prominence fusion, especially the formation of a bucconasal membrane. Using 3D optical projection tomography, we found that the prominences that initiate primary palate formation are similar between mammals and crocodilians but distinct from turtles and lizards, which are in turn similar to each other. Chickens are distinct from all non-avian lineages and instead resemble human embryos in this aspect. The majority of reptiles maintain a communication between the oral and nasal cavities via the choanae during primary palate formation. However, crocodiles appear to have a transient separation between the oral and nasal cavities. Furthermore, the three lizard species examined here, exhibit temporary closure of their external nares via fusion of the lateral nasal prominences with the frontonasal mass, subsequently reopening them just before hatching. The mechanism of the persistent choanal opening was examined in chicken embryos. The mesenchyme posterior/dorsal to the choana had a significant decline in proliferation index, whereas the mesenchyme of the facial processes remained high. This differential proliferation allows the choana to form a channel between the oral and nasal cavities as the facial prominences grow and fuse around it. Our data show that primary palate ontogeny has been modified extensively to support the array of morphological diversity that has evolved among amniotes.
Asunto(s)
Aves , Mamíferos , Mesodermo/embriología , Modelos Biológicos , Paladar Duro/anatomía & histología , Paladar Duro/embriología , Reptiles , Animales , Bromodesoxiuridina , Proliferación Celular/fisiología , Técnicas Histológicas , Humanos , Etiquetado Corte-Fin in Situ , Mesodermo/citología , Especificidad de la Especie , Tomografía ÓpticaRESUMEN
During embryonic development, amniotes typically form outgrowths from the medial sides of the maxillary prominences called palatal shelves or palatine processes. In mammals the shelves fuse in the midline and form a bony hard palate that completely separates the nasal and oral cavities. In birds and lizards, palatine processes develop but remain unfused, leaving a natural cleft. Adult turtles do not possess palatine processes and unlike other amniotes, the internal nares open into the oral cavity. Here we investigate craniofacial ontogeny in the turtle, Emydura subglobosa to determine whether vestigial palatine processes develop and subsequently regress, or whether development fails entirely. We found that the primary palate in turtles develops similarly to other amniotes, but secondary palate ontogeny diverges. Using histology, cellular dynamics and in situ hybridization we found no evidence of palatine process development at any time during ontogeny of the face in the turtle. Furthermore, detailed comparisons with chicken embryos (the model organism most closely related to turtles from a molecular phylogeny perspective), we identified differences in proliferation and gene expression patterns that correlate with the differences in palate morphology. We propose that, in turtles, palatine process outgrowth is never initiated due to a lack of mesenchymal bone morphogenetic protein 2 (BMP2) expression in the maxillary mesenchyme, which in turn fails to induce the relatively higher cellular proliferation required for medial tissue outgrowth. It is likely that these differences between turtles and birds arose after the divergence of the lineage leading to modern turtles.
Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Maxilar/embriología , Mesodermo/embriología , Hueso Paladar/embriología , Tortugas/embriología , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 2/genética , Proliferación Celular , Embrión de Pollo , ADN/química , ADN/genética , Histocitoquímica , Hibridación in Situ , Maxilar/citología , Mesodermo/metabolismo , Datos de Secuencia Molecular , Hueso Paladar/anatomía & histología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Tortugas/anatomía & histologíaRESUMEN
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type vs functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both 2D and 3D cell migration, while the SAP-domain function is important selectively for 3D cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction of MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases vs primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human breast cancer, justifying future development of a specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer. SIGNIFICANCE: Actin cytoskeletal dysregulation gives rise to metastatic dissemination of cancer cells. This study mechanistically investigates the impact of specific functional disruption of MRTF (a transcriptional co-factor of SRF) on breast cancer cell migration.This study establishes a novel mechanism linking mDia2 to MRTF-dependent regulation of cell migration and provides clinical evidence for the association between MRTF activity and increased malignancy in human breast cancer.Findings from these studies justify future exploration of specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer.
RESUMEN
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type versus functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both two-dimensional and three-dimensional cell migration, while the SAP-domain function is important selectively for three-dimensional cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction with MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases versus primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human BC, justifying future development of specific small molecule inhibitors of the MRTF-SRF transcriptional complex as potential therapeutic agents in BC.
Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Forminas , Transactivadores , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Forminas/metabolismo , Femenino , Transactivadores/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Factor de Respuesta Sérica/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genéticaRESUMEN
Acral melanoma (AM) has distinct characteristics as compared with cutaneous melanoma and exhibits poor response to immune checkpoint inhibitors (ICIs). Tumor-intrinsic mechanisms of immune exclusion have been identified in many cancers but less studied in AM. We characterized clinically annotated tumors from patients diagnosed with AM at our institution in correlation with ICI response using whole transcriptome RNAseq, whole exome sequencing, CD8 immunohistochemistry, and multispectral immunofluorescence imaging. A defined interferon-γ-associated T cell-inflamed gene signature was used to categorize tumors into non-T cell-inflamed and T cell-inflamed phenotypes. In combination with AM tumors from two published studies, we systematically assessed the immune landscape of AM and detected differential gene expression and pathway activation in a non-T cell-inflamed tumor microenvironment (TME). Two single-cell(sc) RNAseq AM cohorts and 11 bulk RNAseq cohorts of various tumor types were used for independent validation on pathways associated with lack of ICI response. In total, 892 specimens were included in this study. 72.5% of AM tumors showed low expression of the T cell-inflamed gene signature, with 23.9% of total tumors categorized as the non-T cell-inflamed phenotype. Patients of low CD3+CD8+PD1+ intratumoral T cell density showed poor prognosis. We identified 11 oncogenic pathways significantly upregulated in non-T cell-inflamed relative to T cell-inflamed TME shared across all three acral cohorts (MYC, HGF, MITF, VEGF, EGFR, SP1, ERBB2, TFEB, SREBF1, SOX2, and CCND1). scRNAseq analysis revealed that tumor cell-expressing pathway scores were significantly higher in low versus high T cell-infiltrated AM tumors. We further demonstrated that the 11 pathways were enriched in ICI non-responders compared with responders across cancers, including AM, cutaneous melanoma, triple-negative breast cancer, and non-small cell lung cancer. Pathway activation was associated with low expression of interferon stimulated genes, suggesting suppression of antigen presentation. Across the 11 pathways, fatty acid synthase and CXCL8 were unifying downstream target molecules suggesting potential nodes for therapeutic intervention. A unique set of pathways is associated with immune exclusion and ICI resistance in AM. These data may inform immunotherapy combinations for immediate clinical translation.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Melanoma , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/genética , Microambiente Tumoral , Melanoma Cutáneo MalignoRESUMEN
T cell-centric immunotherapies have shown modest clinical benefit thus far for estrogen receptor-positive (ER+) breast cancer. Despite accounting for 70% of all breast cancers, relatively little is known about the immunobiology of ER+ breast cancer in women with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). To investigate this, we performed phenotypic, transcriptional and functional analyses for a cohort of treatment-naive IDC (n = 94) and ILC (n = 87) tumors. We show that macrophages, and not T cells, are the predominant immune cells infiltrating the tumor bed and the most transcriptionally diverse cell subset between IDC and ILC. Analysis of cellular neighborhoods revealed an interplay between macrophages and T cells associated with longer disease-free survival in IDC but not ILC. Our datasets provide a rich resource for further interrogation into immune cell dynamics in ER+ IDC and ILC and highlight macrophages as a potential target for ER+ breast cancer.
Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Femenino , Humanos , Carcinoma Lobular/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Resultado del Tratamiento , Supervivencia sin Enfermedad , Microambiente TumoralRESUMEN
Background: Acral melanoma (AM) has distinct characteristics as compared to cutaneous melanoma and exhibits poor response to immune checkpoint inhibitors (ICI). Tumor-intrinsic mechanisms of immune exclusion have been identified in many cancers but less studied in AM. Methods: We characterized clinically annotated tumors from patients diagnosed with AM at our institution in correlation with ICI response using whole transcriptome RNAseq, whole exome sequencing, CD8 immunohistochemistry, and multispectral immunofluorescence imaging. A defined interferon-γ-associated T cell-inflamed gene signature was used to categorize tumors into non-T cell-inflamed and T cell-inflamed phenotypes. In combination with AM tumors from two published studies, we systematically assessed the immune landscape of AM and detected differential gene expression and pathway activation in a non-T cell-inflamed tumor microenvironment (TME). Two single-cell(sc) RNAseq AM cohorts and 11 bulk RNAseq cohorts of various tumor types were used for independent validation on pathways associated with lack of ICI response. In total, 892 specimens were included in this study. Results: 72.5% of AM tumors showed low expression of the T cell-inflamed gene signature, with 23.9% of total tumors categorized as the non-T cell-inflamed phenotype. Patients of low CD3 + CD8 + PD1 + intratumoral T cell density showed poor prognosis. We identified 11 oncogenic pathways significantly upregulated in non-T cell-inflamed relative to T cell-inflamed TME shared across all three acral cohorts (MYC, HGF, MITF, VEGF, EGFR, SP1, ERBB2, TFEB, SREBF1, SOX2, and CCND1). scRNAseq analysis revealed that tumor cell-expressing pathway scores were significantly higher in low vs high T cell-infiltrated AM tumors. We further demonstrated that the 11 pathways were enriched in ICI non-responders compared to responders across cancers, including acral melanoma, cutaneous melanoma, triple-negative breast cancer, and non-small cell lung cancer. Pathway activation was associated with low expression of interferon stimulated genes, suggesting suppression of antigen presentation. Across the 11 pathways, fatty acid synthase and CXCL8 were unifying downstream target molecules suggesting potential nodes for therapeutic intervention. Conclusions: A unique set of pathways is associated with immune exclusion and ICI resistance in AM. These data may inform immunotherapy combinations for immediate clinical translation.
RESUMEN
Patients with tumors that do not respond to immune-checkpoint inhibition often harbor a non-T cell-inflamed tumor microenvironment, characterized by the absence of IFN-γ-associated CD8+ T cell and dendritic cell activation. Understanding the molecular mechanisms underlying immune exclusion in non-responding patients may enable the development of novel combination therapies. p38 MAPK is a known regulator of dendritic and myeloid cells however a tumor-intrinsic immunomodulatory role has not been previously described. Here we identify tumor cell p38 signaling as a therapeutic target to potentiate anti-tumor immunity and overcome resistance to immune-checkpoint inhibitors (ICI). Molecular analysis of tumor tissues from patients with human papillomavirus-negative head and neck squamous carcinoma reveals a p38-centered network enriched in non-T cell-inflamed tumors. Pan-cancer single-cell RNA analysis suggests that p38 activation may be an immune-exclusion mechanism across multiple tumor types. P38 knockdown in cancer cell lines increases T cell migration, and p38 inhibition plus ICI in preclinical models shows greater efficacy compared to monotherapies. In a clinical trial of patients refractory to PD1/L1 therapy, pexmetinib, a p38 inhibitor, plus nivolumab demonstrated deep and durable clinical responses. Targeting of p38 with anti-PD1 has the potential to induce the T cell-inflamed phenotype and overcome immunotherapy resistance.
RESUMEN
The interplay between the immune system and tumor progression is well recognized. However, current human breast cancer immunophenotyping studies are mostly focused on primary tumors with metastatic breast cancer lesions remaining largely understudied. To address this gap, we examined exome-capture RNA sequencing data from 50 primary breast tumors (PBTs) and their patient-matched metastatic tumors (METs) in brain, ovary, bone and gastrointestinal tract. We used gene expression signatures as surrogates for tumor infiltrating lymphocytes (TILs) and compared TIL patterns in PBTs and METs. Enrichment analysis and deconvolution methods both revealed that METs had a significantly lower abundance of total immune cells, including CD8+ T cells, regulatory T cells and dendritic cells. An exception was M2-like macrophages, which were significantly higher in METs across the organ sites examined. Multiplex immunohistochemistry results were consistent with data from the in-silico analysis and showed increased macrophages in METs. We confirmed the finding of a significant reduction in immune cells in brain METs (BRMs) by pathologic assessment of TILs in a set of 49 patient-matched pairs of PBT/BRMs. These findings indicate that METs have an overall lower infiltration of immune cells relative to their matched PBTs, possibly due to immune escape. RNAseq analysis suggests that the relative levels of M2-like macrophages are increased in METs, and their potential role in promoting breast cancer metastasis warrants further study.
Asunto(s)
Neoplasias Óseas/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias de la Mama/inmunología , Neoplasias Gastrointestinales/inmunología , Neoplasias Ováricas/inmunología , Adulto , Biomarcadores de Tumor , Neoplasias Óseas/secundario , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/inmunología , Conjuntos de Datos como Asunto , Células Dendríticas/inmunología , Femenino , Neoplasias Gastrointestinales/secundario , Humanos , Inmunohistoquímica , Inmunofenotipificación , Linfocitos Infiltrantes de Tumor/inmunología , Macrófagos/inmunología , Persona de Mediana Edad , Neoplasias Ováricas/secundario , RNA-Seq , Linfocitos T Reguladores/inmunología , Escape del Tumor , Microambiente Tumoral/inmunologíaRESUMEN
Metastasis is the leading cause of cancer mortality. Extravasation of cancer cells is a critical step of metastasis. We report a novel proof-of-concept study that investigated whether non-toxic blood-soluble chemical agents capable of rheological modification of the near-vessel-wall blood flow can reduce extravasation of tumor cells and subsequent development of metastasis. Using an experimental metastasis model, we demonstrated that systemic administration of nanomolar concentrations of so-called drag-reducing polymer dramatically impeded extravasation and development of pulmonary metastasis of breast cancer cells in mice. This is the first proof-of-principle study to directly demonstrate physical/rheological, as opposed to chemical, way to prevent cancer cells from extravasation and developing metastasis and, thus, it opens the possibility of a new direction of adjuvant interventional approach in cancer.
RESUMEN
Profilin-1 (Pfn1) is an important actin-regulatory protein that is downregulated in human breast cancer and when forcibly elevated, it suppresses the tumor-initiating ability of triple-negative breast cancer cells. In this study, we demonstrate that Pfn1 overexpression reduces the stem-like phenotype (a key biologic feature associated with higher tumor-initiating potential) of MDA-MB-231 (MDA-231) triple-negative breast cancer cells. Interestingly, the stem-like trait of MDA-231 cells is also attenuated upon depletion of Pfn1. A comparison of cancer stem cell gene (CSC) gene expression signatures between depleted and elevated conditions of Pfn1 further suggest that Pfn1 may be somehow involved in regulating the expression of a few CSC-related genes including MUC1, STAT3, FZD7, and ITGB1. Consistent with the reduced stem-like phenotype associated with loss-of-function of Pfn1, xenograft studies showed lower tumor-initiating frequency of Pfn1-depleted MDA-231 cells compared to their control counterparts. In MMTV:PyMT mouse model, homozygous but not heterozygous deletion of Pfn1 gene leads to severe genetic mosaicism and positive selection of Pfn1-proficient tumor cells further supporting the contention that a complete lack of Pfn1 is likely not conducive for efficient tumor initiation capability of breast cancer cells. In summary, these findings suggest that the maintenance of optimal stemness and tumor-initiating ability of breast cancer cells requires a balanced expression of Pfn1.
Asunto(s)
Profilinas/metabolismo , Animales , Carcinógenos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucina-1/metabolismo , Células Madre Neoplásicas/metabolismo , Profilinas/antagonistas & inhibidores , Profilinas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factor de Transcripción STAT3/metabolismo , Trasplante Heterólogo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Profilin-1 (Pfn-1) is a ubiquitously expressed actin-binding protein that is essential for normal cell proliferation and migration. In breast cancer and several other adenocarcinomas, Pfn-1 expression is downregulated when compared to normal tissues. Previous studies from our laboratory have shown that genetically modulating Pfn-1 expression significantly impacts proliferation, migration, and invasion of breast cancer cells in vitro, and mammary tumor growth, dissemination, and metastatic colonization in vivo. Therefore, small molecules that can modulate Pfn-1 expression could have therapeutic potential in the treatment of metastatic breast cancer. The overall goal of this study was to perform a multiplexed phenotypic screen to identify compounds that inhibit cell motility through upregulation of Pfn-1. Screening of a test cassette of 1280 compounds with known biological activities on an Oris™ Pro 384 cell migration platform identified several agents that increased Pfn-1 expression greater than two-fold over vehicle controls and exerted anti-migratory effects in the absence of overt cytotoxicity in MDA-MB-231 human breast cancer cells. Concentration-response confirmation and orthogonal follow-up assays identified two bona fide inducers of Pfn-1, purvalanol and tyrphostin A9, that confirmed in single-cell motility assays and Western blot analyses. SiRNA-mediated knockdown of Pfn-1 abrogated the inhibitory effect of tyrphostin A9 on cell migration, suggesting Pfn-1 is mechanistically linked to tyrphostin A9's anti-migratory activity. The data illustrate the utility of the high-content cell motility assay to discover novel targeted anti-migratory agents by integrating functional phenotypic analyses with target-specific readouts in a single assay platform.