Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Gastroenterol ; 24(1): 11, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166741

RESUMEN

BACKGROUND: Exploring predictive biomarkers and therapeutic strategies of ICBs has become an urgent need in clinical practice. Increasing evidence has shown that ARID1A deficiency might play a critical role in sculpting tumor environments in various tumors and might be used as pan-cancer biomarkers for immunotherapy outcomes. The current study aims to explored the immune-modulating role of ARID1A deficiency in Hepatitis B virus (HBV) related hepatocellular carcinoma (HBV-HCC) and its potential immunotherapeutic implications. METHODS: In the current study, we performed a comprehensive analysis using bioinformatics approaches and pre-clinical experiments to evaluate the ARID1A regulatory role on the biological behavior, and immune landscape of Hepatitis B virus (HBV) related hepatocellular carcinoma (HBV-HCC). A total of 425 HBV-related hepatocellular carcinoma patients from TCGA-LIHC, AMC and CHCC-HBV cohort were enrolled in bioinformatics analysis. Immunohistochemical staining of HBV-HCC specimens and ARID1A deficiency cellular models were used to validate the results of the analysis. RESULTS: Our results have shown that ARID1A deficiency promoted tumor proliferation and metastasis. More importantly, ARID1A deficiency in HBV-HCC was associated with the higher TMB, elevated immune activity, and up-regulated expression of immune checkpoint proteins, especially TIM-3 in HBV-HCC. Further, the expression of Galectin-9, which is the ligand of TIM-3, was elevated in the ARID1A knockout HBV positive cell line. CONCLUSION: To conclude, we have shown that the ARID1A deficiency was correlated with more active immune signatures and higher expression of immune checkpoints in HBV-HCC. Additionally, the present study provides insights to explore the possibility of the predictive role of ARID1A in HBV-HCC patients responsive to immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/patología , Receptor 2 Celular del Virus de la Hepatitis A , Biomarcadores de Tumor , Hepatitis B/complicaciones , Proteínas de Unión al ADN , Factores de Transcripción
2.
Mol Cancer ; 21(1): 11, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983546

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is among the most common forms of cancer and is associated with poor patient outcomes. The emergence of therapeutic resistance has hampered the efficacy of targeted treatments employed to treat HCC patients to date. In this study, we conducted a series of CRISPR/Cas9 screens to identify genes associated with synthetic lethality capable of improving HCC patient clinical responses. METHODS: CRISPR-based loss-of-function genetic screens were used to target 18,053 protein-coding genes in HCC cells to identify chemotherapy-related synthetic lethal genes in these cells. Synergistic effects were analyzed through in vitro and in vivo analyses, while related mechanisms were explored through RNA-seq and metabolomics analyses. Potential inhibitors of identified genetic targets were selected through high-throughput virtual screening. RESULTS: The inhibition of phosphoseryl-tRNA kinase (PSTK) was found to increase HCC cell sensitivity to chemotherapeutic treatment. PSTK was associated with the suppression of chemotherapy-induced ferroptosis in HCC cells, and the depletion of PSTK resulted in the inactivation of glutathione peroxidative 4 (GPX4) and the disruption of glutathione (GSH) metabolism owing to the inhibition of selenocysteine and cysteine synthesis, thus enhancing the induction of ferroptosis upon targeted chemotherapeutic treatment. Punicalin, an agent used to treat hepatitis B virus (HBV), was identified as a possible PSTK inhibitor that exhibited synergistic efficacy when applied together with Sorafenib to treat HCC in vitro and in vivo. CONCLUSIONS: These results highlight a key role for PSTK as a mediator of resistance to targeted therapeutic treatment in HCC cells that functions by suppressing ferroptotic induction. PSTK inhibitors may thus represent ideal candidates for overcoming drug resistance in HCC.


Asunto(s)
Sistemas CRISPR-Cas , Carcinoma Hepatocelular/genética , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Pruebas Genéticas , Neoplasias Hepáticas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Técnicas de Silenciamiento del Gen , Pruebas Genéticas/métodos , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Oxidación-Reducción/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Pronóstico , Resultado del Tratamiento
3.
J Clin Endocrinol Metab ; 109(2): 505-515, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37622214

RESUMEN

CONTEXT: Fusion oncogenes are involved in the underlying pathology of advanced differentiated thyroid cancer (DTC), and even the cause of radioactive iodine (RAI)-refractoriness. OBJECTIVE: We aimed to investigation between fusion oncogenes and clinicopathological characteristics involving a large-scale cohort of patients with advanced DTC. METHODS: We collected 278 tumor samples from patients with locally advanced (N1b or T4) or distant metastatic DTC. Targeted next-generation sequencing with a 26-gene ThyroLead panel was performed on these samples. RESULTS: Fusion oncogenes accounted for 29.86% of the samples (72 rearrangement during transfection (RET) fusions, 7 neurotrophic tropomyosin receptor kinase (NTRK) fusions, 4 anaplastic lymphoma kinase (ALK) fusions) and occurred more frequently in pediatric patients than in their adult counterparts (P = .003, OR 2.411, 95% CI 1.329-4.311) in our cohort. DTCs with fusion oncogenes appeared to have a more advanced American Joint Committee on Cancer (AJCC)_N and AJCC_M stage (P = .0002, OR 15.47, 95% CI 2.54-160.9, and P = .016, OR 2.35, 95% CI 1.18-4.81) than those without. DTCs with fusion oncogenes were associated with pediatric radioactive iodine (RAI) refractoriness compared with those without fusion oncogenes (P = .017, OR 4.85, 95% CI 1.29-15.19). However, in adult DTCs, those with fusion oncogenes were less likely to be associated with RAI refractoriness than those without (P = .029, OR 0.50, 95% CI 0.27-0.95), owing to a high occurrence of the TERT mutation, which was the most prominent genetic risk factor for RAI refractoriness in multivariate logistic regression analysis (P < .001, OR 7.36, 95% CI 3.14-17.27). CONCLUSION: Fusion oncogenes were more prevalent in pediatric DTCs than in their adult counterparts and were associated with pediatric RAI refractoriness, while in adult DTCs, TERT mutation was the dominant genetic contributor to RAI refractoriness rather than fusion oncogenes.


Asunto(s)
Adenocarcinoma , Neoplasias de la Tiroides , Adulto , Humanos , Niño , Neoplasias de la Tiroides/patología , Radioisótopos de Yodo , Oncogenes/genética , Adenocarcinoma/genética , Tiroidectomía
4.
J Clin Endocrinol Metab ; 109(5): 1231-1240, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38060243

RESUMEN

CONTEXT: Patients with differentiated thyroid cancer (DTC) with distant metastasis (DM) are usually not recognized as radioactive iodine (RAI)-refractory DTC in a timely manner. The elucidation of genetic features related to RAI uptake patterns may shed light on the early recognition of RAI-refractory DTC. OBJECTIVE: This work aimed to elucidate the underlying molecular features behind different RAI uptake patterns. METHODS: A total of 214 patients with DM-DTC were retrospectively included in the analysis. RAI uptake patterns were defined as initially RAI refractory (I-RAIR) and initially RAI avid (I-RAIA) according to the first post-treatment scan, then I-RAIA was further divided into continually RAIA (C-RAIA), partly RAIR (P-RAIR), and gradually RAIR (G-RAIR) according to subsequent scans. The molecular subtype groups-BRAFV600E mutated, RAS mutated, fusions, and others-were classified according to main driver genes status. RESULTS: BRAF, TERT promoter, and TP53 mutations are more frequently detected in the I-RAIR pattern while RET fusions and RAS mutations are more frequent in the I-RAIA pattern. A late-hit mutation including TERT, TP53, or PIK3CA is more common in I-RAIR than that in I-RAIA (50.0% vs 26.9%, P = .001), particularly for those with RAS mutations in the I-RAIR group, always accompanied by TERT promoter. Isolated RET fusions accounts for 10% of I-RAIR. When compared among driver gene groups, BRAFV600E-mutated tumors have a higher rate of the I-RAIR pattern (64.4%) than RAS-mutated (4.5%, P < .001) and fusion-positive (20.7%, P < .001) tumors. In I-RAIA subgroups, BRAFV600E-mutated tumors have lower prevalence of the C-RAIA pattern than those with RAS mutation or fusions. CONCLUSION: Patients with the I-RAIR pattern predominantly featured mutations of the BRAF and/or TERT promoter, of which RAS mutations were usually accompanied by late-hit mutations, while fusions mostly occurred alone.

5.
Neoplasia ; 49: 100972, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237535

RESUMEN

Papillary thyroid cancer (PTC) is the most prevalent endocrine cancer worldwide. Approximately 30 % of PTC patients will progress into the advanced or metastatic stage and have a relatively poor prognosis. It is well known that epithelial-mesenchymal transition (EMT) plays a pivotal role in thyroid cancer metastasis, resistance to therapy, and recurrence. Clarifying the molecular mechanisms of EMT in PTC progression will help develop the targeted therapy of PTC. The aberrant expression of some transcription factors (TFs) participated in many pathological processes of cancers including EMT. In this study, by performing bioinformatics analysis, adipocyte enhancer-binding protein 1 (AEBP1) was screened as a pivotal TF that promoted EMT and tumor progression in PTC. In vitro experiments indicated that knockout of AEBP1 can inhibit the growth and invasion of PTC cells and reduce the expression of EMT markers including N-cadherin, TWIST1, and ZEB2. In the xenograft model, knockout of AEBP1 inhibited the growth and lung metastasis of PTC cells. By performing RNA-sequencing, dual-luciferase reporter assay, and chromatin immunoprecipitation assay, Bone morphogenetic protein 4 (BMP4) was identified as a downstream target of AEBP1. Over-expression of BMP4 can rescue the inhibitory effects of AEBP1 knockout on the growth, invasion, and EMT phenotype of PTC cells. In conclusion, these findings demonstrated that AEBP1 plays a critical role in PTC progression by regulating BMP4 expression and the AEBP1-BMP4 axis may present novel therapeutic targets for PTC treatment.


Asunto(s)
MicroARNs , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/metabolismo , MicroARNs/genética , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Proteínas Represoras/genética
7.
Am J Cancer Res ; 13(2): 569-588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895975

RESUMEN

Patients with triple-negative breast cancer (TNBC) reportedly benefit from immune checkpoint blockade (ICB) therapy. However, the subtype-specific vulnerabilities of ICB in TNBC remain unclear. As the complex interplay between cellular senescence and anti-tumor immunity has been previously discussed, we aimed to identify markers related to cellular senescence that may serve as potential predictors of response to ICB in TNBC. We used three transcriptomic datasets derived from ICB-treated breast cancer samples at both scRNA-seq and bulk-RNA-seq levels to define the subtype-specific vulnerabilities of ICB in TNBC. Differences in the molecular features and immune cell infiltration among the different TNBC subtypes were further explored using two scRNA-seq, three bulk-RNA-seq, and two proteomic datasets. 18 TNBC samples were collected and utilized to verify the association between gene expression and immune cell infiltration by multiplex immunohistochemistry (mIHC). A specific type of cellular senescence was found to be significantly associated with response to ICB in TNBC. We employed the expression of four senescence-related genes, namely CDKN2A, CXCL10, CCND1, and IGF1R, to define a distinct senescence-related classifier using the non-negative matrix factorization approach. Two clusters were identified, namely the senescence-enriching cluster (C1; CDKN2A high CXCL10 high CCND1 low IGF1R low) and proliferating-enriching cluster (C2; CDKN2A low CXCL10 low CCND1 high IGF1R high). Our results indicated that the C1 cluster responds better to ICB and behaves with higher CD8+ T cell infiltration than the C2 cluster. Altogether, in this study, we developed a robust cellular senescence-related classifier of TNBC based on the expression of CDKN2A, CXCL10, CCND1, and IGF1R. This classifier act as a potential predictor of clinical outcomes and response to ICB.

8.
Cell Death Discov ; 9(1): 331, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666810

RESUMEN

Interferon-gamma (IFN-γ) exerts anti-tumor effects by inducing ferroptosis. Based on CRISPR/Cas9 knockout screening targeting genome-wide protein encoding genes in HepG2 and SK-Hep-1 cell lines, we found that cAMP response element-binding protein (CREB) regulated transcription coactivator 3 (CRTC3) protects tumor cells from drug-induced ferroptosis and significantly inhibits the efficacy of IFN-γ treatment in hepatocellular carcinoma (HCC). Mechanistically, CRTC3 knockout altered tumor cell lipid patterns and increased the abundance of polyunsaturated fatty acids (PUFAs), which enables lipid peroxidation and enhances the susceptibility of HCC cells to ferroptosis inducers. To scavenge for accumulated lipid peroxides (LPO) and maintain redox equilibrium, HCC cells up-regulate SLC7A11 and glutathione peroxidase 4 (GPx4) expressions to enhance the activities of glutamate-cystine antiporter (system xc-) and LPO clearance. As IFN-γ inhibiting system xc-, simultaneous treatment with IFN-γ disrupts the compensatory mechanism, and generates a synergistic effect with CRTC3 knockout to facilitate ferroptosis. Sensitizing effects of CRTC3 depletion were confirmed using typical ferroptosis inducers, including RSL3 and erastin. Sorafeinib, a commonly used target drug in HCC, was repeatedly reported as a ferroptosis inducer. We then conducted both in vitro and vivo experiments and demonstrated that CRTC3 depletion sensitized HCC cells to sorafenib treatment. In conclusion, CRTC3 is involved in the regulation of PUFAs metabolism and ferroptosis. Targeting CRTC3 signaling in combination with ferroptosis inducers present a viable approach for HCC treatment and overcoming drug resistance.

9.
Cell Rep Med ; 4(11): 101264, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37939712

RESUMEN

ARID1A is among the most commonly mutated tumor suppressor genes in hepatocellular carcinoma (HCC). In this study, we conduct a CRISPR-Cas9 synthetic lethality screen using ARID1A-deficient HCC cells to identify approaches to treat HCC patients harboring ARID1A deficiency. This strategy reveals that the survival of these ARID1A-deficient HCC cells is highly dependent on genes related to the tricarboxylic acid (TCA) cycle. Mechanistically, ARID1A loss represses expression of key glycolysis-related gene PKM, shifting cellular glucose metabolism from aerobic glycolysis to dependence on the TCA cycle and oxidative phosphorylation. Cuproptosis is a recently defined form of copper-induced cell death reported to directly target the TCA cycle. Here, we find that ARID1A-deficient HCC cells and xenograft tumors are highly sensitive to copper treatment. Together, these results offer evidence of the synthetic lethality between ARID1A deficiency and mitochondrial respiration impairment, suggesting that copper treatment constitutes a promising therapeutic strategy for selectively targeting ARID1A-deficient HCC.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Cobre , Proteínas de Unión al ADN/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Mutaciones Letales Sintéticas/genética , Factores de Transcripción/genética
10.
Front Med (Lausanne) ; 10: 1167676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081842

RESUMEN

Background: Breast cancer (BC) is the most common malignant disease worldwide. Although the survival rate is improved in recent years, the prognosis is still bleak once recurrence and metastasis occur. It is vital to investigate more efficient biomarkers for predicting the metastasis and relapse of BC. DYNLT1 has been reported that participating in the progression of multiple cancers. However, there is still a lack of study about the correlation between DYNLT1 and BC. Methods: In this study, we evaluated and validated the expression pattern and prognostic implication of DYNLT1 in BC with multiple public cohorts and BC tumor microarrays (TMAs) of paraffin-embedded tissues collected from the Affiliated Hospital of Jining Medical University. The response biomarkers for immune therapy, such as tumor mutational burden (TMB), between different DYNLT1 expression level BC samples were investigated using data from the TCGA-BRCA cohort utilizing public online tools. In addition, colony formation and transwell assay were conducted to verify the effects of DYNLT1 in BC cell line proliferation and invasion. Results: The results demonstrated that DYNLT1 overexpressed in BC and predicted poor relapse-free survival in our own BC TMA cohort. In addition, DYNLT1 induced BC development by promoting MDA-MB-231 cell proliferation migration, and metastasis. Conclusion: Altogether, our findings proposed that DYNLT1 could be a diagnostic and prognostic indicator in BC.

11.
Gene ; 819: 146243, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35122925

RESUMEN

Globally, hepatocellular carcinoma (HCC) has a dismal prognosis and studies have shown that accurate prognostic risk assessment can have clinically significant benefits for patients with HCC patients. After successively performing univariate Cox regression, Lasso regression, and stepwise multivariate Cox regression analysis, three pyroptosis gene (GPX4, NLRP1, and NLRP6) were selected to construct and validate the prognostic model of HCC based on public data. The expression pattern and prognostic implication of GPX4 in HCC was validated by immunohistochemistry staining in HCC specimens collected from Affiliated Hospital of Jining Medical University. A nomogram combined model and clinical characteristics was plotted after the prognostic predictive value of model was validated with receiver operating characteristic curves and Kaplan-Meier survival analysis. Our results indicate that assessing pyroptosis gene expression may be useful to predict the prognosis of HCC patients by enhancing antitumor immunity.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Estadísticos , Proteínas NLR/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Piroptosis/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Estimación de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas NLR/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Pronóstico
12.
Dis Markers ; 2022: 1686316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37223105

RESUMEN

Recurrence is the major death cause of differentiated thyroid carcinoma (DTC), and a better understanding of recurrence risk at early stage may lead to make the optimal medical decision to improve patients' prognosis. The 2015 American Thyroid Association (ATA) risk stratification system primary based on clinic-pathologic features is the most commonly used to describe the initial risk of persistent/recurrent disease. Besides, multiple prognostics models based on multigenes expression profiles have been developed to predict the recurrence risk of DTC patients. Recent evidences indicated that aberrant DNA methylation is involved in the initiation and progression of DTC and can be useful biomarkers for clinical diagnosis and prognosis prediction of DTC. Therefore, there is a need for integrating gene methylation feature to assess the recurrence risk of DTC. Gene methylation profile from The Cancer Genome Atlas (TCGA) was used to construct a recurrence risk model of DTC by successively performed univariate Cox regression, LASSO regression, and multivariate Cox regression. Two Gene Expression Omnibus (GEO) methylation cohorts of DTC were utilized to validate the predictive value of the methylation profiles model as external cohort by receiver operating characteristic (ROC) curve and survival analysis. Besides, CCK-8, colony-formation assay, transwell, and scratch-wound assay were used to investigate the biological significance of critical gene in the model. In our study, we constructed and validated a prognostic signature based on methylation profiles of SPTA1, APCS, and DAB2 and constructed a nomogram based on the methylation-related model, age, and AJCC_T stage that could provide evidence for the long-term treatment and management of DTC patients. Besides, in vitro experiments showed that DAB2 inhibited proliferation, colony-formation, and migration of BCPAP cells and the gene set enrichment analysis and immune infiltration analysis showed that DAB2 may promote antitumor immunity in DTC. In conclusion, promoter hypermethylation and loss expression of DAB2 in DTC may be a biomarker of unfavorable prognosis and poor response to immune therapy.


Asunto(s)
Adenocarcinoma , Neoplasias de la Tiroides , Humanos , Pronóstico , Metilación , Neoplasias de la Tiroides/genética , Nomogramas , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis
13.
Bioengineered ; 12(1): 8965-8979, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34635011

RESUMEN

Over the years, molecular subtypes based on estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2) status have been observed to effectively guide decision-making for the optimal treatment of patients with breast carcinoma (BRCA). However, despite this progress, there are still more than 41,000 BRCA-related fatalities each year in the United States. Moreover, effective drug targets for triple-negative breast carcinoma (TNBC) are still lacking. Given its high mortality rate, it is necessary to investigate more biomarkers with prognostic and pathological relevance in BRCA. In our study, we examined the expression patterns and prognostic implications of transmembrane P24 trafficking protein 9 (TMED9) in BRCA using multiple public cohorts and BRCA specimens collected from Shanghai General Hospital. In addition to this, in vitro experiments were also performed to evaluate the effects of TMED9 expression in BRCA cell proliferation and migration. Our results have demonstrated that a high expression of TMED9 promoted BRCA cell proliferation and migration and predicted poor prognosis in patients with BRCA. In conclusion, TMED9 is a potential prognostic indicator and a possible drug target of BRCA.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Proteínas de Transporte Vesicular/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Humanos , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Proteínas de Transporte Vesicular/genética
14.
Cell Cycle ; 20(17): 1681-1691, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369850

RESUMEN

Overexpression of DTYMK is related with tumorigenesis and progression in several human tumors. However, the role of upregulated DTYMK in hepatocellular carcinoma (HCC) patients still remains unclear. In this study, the DTYMK expression in HCC tumors was evaluated in three GEO series (GSE14520, GSE54236, GSE63898), TCGA-LIHC, and ICGC-IRLR-JP cohorts. Survival analysis of DTYMK based on TCGA-LIHC and ICGC-LIRI-JP cohorts was conducted. We found that DTYMK was dramatically upregulated in tumor tissue compared with that in adjacent liver tissue. Kaplan-Meier analysis revealed that high expression of DTYMK in HCC patients' tumor tissue was significantly corresponded to worse overall survival (OS) (P < 0.05). Further analysis showed that overexpressing DTYMK led to poor relapse free survival (RFS) and disease-specific survival (DSS) (all P < 0.05). In conclusion, DTYMK is upregulated in tumors and correlated with poor prognosis in HCC patients. In our report, DTYMK is higher expression in HCC cancer tissue and cell line than tumor adjacent tissue and normal liver cell line. Knocking down DTYMK can inhabit tumor cell proliferation by interfering cell cycle, whereas overexpression of DTYMK can promote tumor cell proliferation. These findings indicate that upregulation of DTYMK enhances tumor growth and proliferation by promoting cell cycle.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor , Carcinoma Hepatocelular/patología , Ciclo Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/patología
15.
PeerJ ; 9: e11929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34414037

RESUMEN

BACKGROUND: Dual specificity protein phosphatase (DUSP)12 is an atypical member of the protein tyrosine phosphatase family, which are overexpressed in multiple types of malignant tumors. This protein family protect cells from apoptosis and promotes the proliferation and motility of cells. However, the pathological role of DUSP12 in hepatocellular carcinoma (HCC) is incompletely understood. METHODS: We analyzed mRNA expression of DUSP12 between HCC and normal liver tissues using multiple online databases, and explored the status of DUSP12 mutants using the cBioPortal database. The correlation between DUSP12 expression and tumor-infiltrating immune cells was demonstrated using the Tumor Immune Estimation Resource database and the Tumor and Immune System Interaction Database. Loss of function assay was utilized to evaluate the role of DUSP12 in HCC progression. RESULTS: DUSP12 had higher expression along with mRNA amplification in HCC tissues compared with those in normal liver tissues, which suggested that higher DUSP12 expression predicted shorter overall survival. Analyses of functional enrichment of differentially expressed genes suggested that DUSP12 regulated HCC tumorigenesis, and that knockdown of DUSP12 expression by short hairpin (sh)RNA decreased the proliferation and migration of HCC cells. Besides, DUSP12 expression was positively associated with the infiltration of cluster of differentiation (CD)4+ T cells (especially CD4+ regulatory T cells), macrophages, neutrophils and dendritic cells. DUSP12 expression was positively associated with immune-checkpoint moieties, and was downregulated in a C3 immune-subgroup of HCC (which had the longest survival). CONCLUSION: These data suggest that DUSP12 may have a critical role in the tumorigenesis, infiltration of immune cells, and prognosis of HCC.

16.
Biomark Med ; 15(7): 497-508, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33769075

RESUMEN

Background: There was increasing evidence showing that ARID1A alterations correlated with higher tumor mutational burden, but there were limited studies focusing on the adaptive mechanisms for tumor cells to survive under excessive genomic alterations. Materials & methods: To further explore the adaptive mechanisms under ARID1A alterations, we performed RNA sequencing in ARID1A knockdown hepatocellular carcinoma cell lines, and demonstrated that decreased expression of ARID1A controlled global ribosomal proteins synthesis. The results were further confirmed by quantitative reverse transcription-PCR and bioinformatic analysis in The Cancer Genome Atlas Liver Hepatocellular Carcinoma database. Conclusion: The present study was the first to demonstrate that ARID1A might be involved in the translation pathway and served as an adaptive mechanism for tumor cells to survive under stress.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas de Unión al ADN/biosíntesis , Neoplasias Hepáticas/metabolismo , Proteínas Ribosómicas/antagonistas & inhibidores , Factores de Transcripción/biosíntesis , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Bases de Datos Genéticas , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Mutación , Estadificación de Neoplasias , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Tasa de Supervivencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Transl Cancer Res ; 9(4): 2363-2377, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35117597

RESUMEN

BACKGROUND: Anomalous expression of glucose transporters (GLUTs) has been observed in a variety of tumor tissues. Although GLUT factors have been shown to have prognostic value for some cancer types, detailed bioinformatics investigation of the factors contributing to the prognostic prediction for patients with breast cancer (BC) has not yet been performed. METHODS: In this study, we examined the transcription levels of GLUT1, GLUT3, and GLUT4 and their associations with prognostic clinical data in patients with BC from the ONCOMINE database, using gene expression profiling interactive analysis (GEPIA), Kaplan-Meier (KM) plotter, and cBioPortal online tools. RESULTS: The transcription level of GLUT1 was significantly higher in the BC samples than in the normal tissues, whereas the levels of GLUT3 and GLUT4 were lower in the BC samples. The expression levels of GLUT1 and GLUT3 were associated with the cancer clinical stage. Consistently, survival analysis demonstrated that a high expression level of GLUT1 was associated with low relapse-free survival (RFS) in patients with BC, whereas high GLUT3 and GLUT4 levels predicted a longer RFS in these patients. CONCLUSIONS: Overall, these results suggest GLUT1 as an effective target of precision therapy, while GLUT3/4 are novel biomarkers for the prognosis of patients with BC.

18.
Cancer Manag Res ; 12: 12349-12361, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33293862

RESUMEN

PURPOSE: Hepatocellular carcinoma (HCC) is one of the most devastating diseases worldwide. Limited performance of clinicopathologic parameters as prognostic factors underscores more accurate and effective biomarkers for high-confidence prognosis that guide decision-making for optimal treatment of HCC. The aim of the present study was to establish a novel panel to improve prognosis prediction of HCC patients, with a particular interest in transcription factors (TFs). MATERIALS AND METHODS: A TF-related prognosis model of liver cancer with data from ICGC-LIRP-JI cohort successively were processed by univariate and multivariate Cox regression analysis. Then, for evaluating the prognostic prediction value of the model, receiver operating characteristic (ROC) curve and survival analysis were performed both with internal data from the International Cancer Genome Consortium (ICGC) and external data from The Cancer Genome Atlas (TCGA). Furthermore, we verified the expression of three genes in HCC cell lines by Western blot and qPCR and protein expression level by IHC in liver cancer patients' sample. Finally, we constructed a TF clinical characteristics nomogram to furtherly predict liver cancer patient survival probability with TCGA cohort. RESULTS: By Cox regression analysis, a panel of 15 TFs (ZNF331, MYCN, AHRR, LEF1, ZNF780A, POU1F1, DLX5, ZNF775, PLSCR1, FOXK1, TAL2, ZNF558, SOX9, TCFL5, GSC) was identified to present with powerful predictive performance for overall survival of HCC patients based on internal ICGC cohort and external TCGA cohort. A nomogram that integrates these factors was established, allowing efficient prediction of survival probabilities and displaying higher clinical utility. CONCLUSION: The 15-TF panel is an independent prognostic factor for HCC, and 15 TF-based nomogram might provide implication an effective approach for HCC patient management and treatment.

20.
Nat Commun ; 10(1): 2863, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253779

RESUMEN

Cancer stem cells (CSCs) represent a major source of treatment resistance and tumor progression. However, regulation of CSCs stemness is not entirely understood. Here, we report that TSPAN8 expression is upregulated in breast CSCs, promotes the expression of the stemness gene NANOG, OCT4, and ALDHA1, and correlates with therapeutic resistance. Mechanistically, TSPAN8 interacts with PTCH1 and inhibits the degradation of the SHH/PTCH1 complex through recruitment of deubiquitinating enzyme ATXN3. This results in the translocation of SMO to cilia, downstream gene expression, resistance of CSCs to chemotherapeutic agents, and enhances tumor formation in mice. Accordingly, expression levels of TSPAN8, PTCH1, SHH, and ATXN3 are positively correlated in human breast cancer specimens, and high TSPAN8 and ATXN3 expression levels correlate with poor prognosis. These findings reveal a molecular basis of TSPAN8-enhanced Sonic Hedgehog signaling and highlight a role for TSPAN8 in promoting cancer stemness.


Asunto(s)
Proteínas Hedgehog/metabolismo , Células Madre Neoplásicas/fisiología , Tetraspaninas/metabolismo , Animales , Neoplasias de la Mama , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/terapia , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA