Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Pathog ; 174: 105891, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36427659

RESUMEN

CONTEXT: Chronic kidney disease (CKD) affects approximately 10% of the global population. The abundance of Akkermansia muciniphila (AKK) is significantly reduced in CKD patients. OBJECTIVE: This study investigated the effects of AKK bacteria on kidney damage and the renal interstitium in rats with CKD. MATERIALS AND METHODS: CKD model 5/6 nephrectomy rats were used. CKD rats were supplemented with AKK (2 × 108 cfu/0.2 mL) for 8 weeks. RESULTS: AKK administration significantly suppressed epithelial-mesenchymal transition (EMT), and high-throughput 16S rRNA pyrosequencing showed that AKK supplementation restored the disordered intestinal microecology in CKD rats. AKK also enhanced the intestinal mucosal barrier function. AKK may regulate the intestinal microecology and reduce renal interstitial fibrosis by enhancing the abundance of probiotics and reducing damage to the intestinal mucosal barrier. CONCLUSION: The results suggest that AKK administration could be a novel therapeutic strategy for treating renal fibrosis and CKD.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Ratas , Animales , ARN Ribosómico 16S/genética , Riñón/patología , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/microbiología , Fibrosis
2.
J Cell Mol Med ; 26(24): 6066-6078, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36458537

RESUMEN

Chronic kidney disease (CKD) affects approximately 10% of the global population. Muscle atrophy occurs in patients with almost all types of CKD, and the gut microbiome is closely related to protein consumption during chronic renal failure (CRF). This study investigated the effects of Bacteroides plebeius on protein energy consumption in rats with CKD, and our results suggest that Bacteroides plebeius may combat muscle atrophy through the Mystn/ActRIIB/SMAD2 pathway. A total of 5/6 Nx rats were used as a model of muscle wasting in CKD. The rats with muscle wasting were administered Bacteroides plebeius (2 × 108 cfu/0.2 ml) for 8 weeks. The results showed that Bacteroides plebeius administration significantly inhibited muscle wasting in CKD. High-throughput 16 S rRNA pyrosequencing revealed that supplementation with Bacteroides plebeius rescued disturbances in the gut microbiota. Bacteroides plebeius could also enhance the barrier function of the intestinal mucosa. Bacteroides plebeius may modulate the gut microbiome and reduce protein consumption by increasing the abundance of probiotics and reducing damage to the intestinal mucosal barrier. Our findings suggest that Bacteroides plebeius may combat muscle atrophy through the Mystn/ActRIIB/SMAD2 pathway.


Asunto(s)
Insuficiencia Renal Crónica , Ratas , Animales , Insuficiencia Renal Crónica/complicaciones , Atrofia Muscular/etiología , Músculos , Proteínas en la Dieta
3.
Heliyon ; 10(8): e29093, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38665562

RESUMEN

Objective: Shenshuai Yingyang Jiaonang (SSYYJN), a traditional Chinese medicine formula, can ameliorate muscle atrophy associated with chronic kidney disease (CKD). However, its mechanisms of action remain unclear. This study is to investigate the molecular mechanisms involved in the effects of SSYYJN in ameliorating muscle atrophy associated with CKD in rats. Methods: The chemical compounds of SSYYJN were identified by UPLC-Q-Orbitrap HRMS. Considering the dose-response relationship of the identified compounds, male SD rats were randomly divided into Sham, Model, SSYYJN, and α-Keto Acid (KA) groups. Subsequently, we assessed the therapeutic and anti-ferroptotic effects of SSYYJN. Network pharmacology studies were used to predict the molecular mechanism of SSYYJN on ferroptosis and were further verified for accuracy. Results: A total of 42 active compounds were identified from SSYYJN. SSYYJN alleviated muscle atrophy caused by CKD, as evidenced by changes in body weight, serum biochemical indices, mass and histopathology of the skeletal muscle, and the levels of MuRF1. SSYYJN reduced the levels of iron, MDA, and ROS, increased the levels of GSH, NAPDH, and Gpx4. Network pharmacology analysis indicated that SSYYJN exerted anti-ferroptotic effects that were closely related to the HIF-1α signaling pathway. Molecular protein and genetic test results showed that SSYYJN increased HIF-1α protein and increased SLC7A11. Conclusions: SSYYJN attenuates muscle atrophy in CKD by inhibiting ferroptosis through the activation of the HIF-1α/SLC7A11 pathway and might be a promising traditional Chinese medicine for muscle atrophy in CKD.

4.
Front Pharmacol ; 13: 781806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222021

RESUMEN

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, so there is an urgent need to suppress its development at early stage. Shenkang pills (SKP) are a hospital prescription selected and optimized from effective traditional Chinese medicinal formulas for clinical treatment of DN. In the present study, liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS) and total contents qualification were applied to generate a quality control standard of SKP. For verifying the therapeutic effects of SKP, db/db mice were administered intragastrically with SKP at a human-equivalent dose (1.82 g/kg) for 4 weeks. Moreover, the underlying mechanism of SKP were analyzed by the renal RNA sequencing and network pharmacology. LC-Q-TOF-MS identified 46 compounds in SKP. The total polysaccharide and organic acid content in SKP were 4.60 and 0.11 mg/ml, respectively, while the total flavonoid, saponin, and protein content were 0.25, 0.31, and 0.42 mg/ml, respectively. Treatment of SKP significantly reduced fasting blood glucose, improved renal function, and ameliorated glomerulosclerosis and focal foot processes effacement in db/db mice. In addition, SKP protected podocytes from injury by increasing nephrin and podocin expression. Furthermore, transcriptome analyses revealed that 430 and 288 genes were up and down-regulated in mice treated with SKP, relative to untreated controls. Gene ontology enrichment analysis revealed that the differentially expressed genes mainly involved in modulation of cell division and chromosome segregation. Weighted gene co-expression network analysis and network pharmacology analysis indicated that aurora kinase B (AURKB), Rac GTPase activating protein 1 (RacGAP1) and SHC binding, and spindle associated 1 (shcbp1) might be the core targets of SKP. This protein and Ras homolog family member A (RhoA) were found overexpression in db/db mice, but significantly decreased with SKP treatment. We conclude that SKP can effectively treat early-stage DN and improve renal podocyte dysfunction. The mechanism may involve down-regulation of the AURKB/RacGAP1/RhoA pathway.

5.
J Pharm Biomed Anal ; 204: 114271, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34325249

RESUMEN

Houttuynia cordata Thunb. ("Yu-Xing-Cao"), a traditional Chinese medicinal herb, has long been used to treat various diseases. However, detailed information regarding the chemical constituents of H. cordata aqueous extract is lacking, and the molecular basis of its beneficial effects on muscle is unknown. To investigate these points, in this study, we used ultra-performance liquid chromatography coupled with quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) in positive and negative ion modes to profile and identify the major constituents of H. cordata water extract. A total of 63 peaks were identified based on mass and fragmentation characteristics, including 29 organic acids and their glycosides, 17 flavonoids, 7 volatiles, 4 pyrimidine and purine derivatives, 2 alkaloids, 2 amino acids, 1 isovanillin, and 1 coumarin. The total flavonoid and polyphenol contents of the extract were 4.77 and 139.15 mg/mL, respectively, by ultraviolet spectrophotometry. The cytoprotective activity of H. cordata aqueous extract was evaluated using C2C12 cells treated with tumor necrosis factor (TNF)-α to induce oxidative challenge. The TNF-α induced decrease in cell viability was reversed by treatment for 48 h with the extract; moreover, superoxide dismutase activity was increased while reactive oxygen species level was decreased. These results provide molecular-level evidence for the antioxidant effect of H. cordata extract and highlight its therapeutic potential for the treatment of muscle injury or diseases caused by oxidative stress.


Asunto(s)
Medicamentos Herbarios Chinos , Houttuynia , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/farmacología , Flavonoides/análisis , Flavonoides/farmacología , Extractos Vegetales/farmacología , Polifenoles
6.
Eur J Pharmacol ; 907: 174271, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34147475

RESUMEN

Renal fibrosis is the pathological consequence of progressive chronic kidney disease. Although it has been reported that vitamin D3 exerts antifibrotic effects, the underlying mechanisms remain unclear. This study is aimed at investigating the effects and molecular mechanisms in high-dose vitamin D3 treatment on renal fibrosis. A model of chronic kidney disease was established by 5/6 nephrectomy in rats characterised by high levels of serum creatine, urea nitrogen, and urinary protein. Serum 25-dihydroxyvitamin D3, calcium and parathormone levels were measured to evaluate vitamin D levels. Hematoxylin and eosin, periodic acid Schiff and Mallory's Trichrome staining were used to evaluate histopathological changes in rats. Moreover, the expression of vimentin, collagen I, α-smooth muscle actin and E-cadherin were analyzed at molecular and histopathological levels. Our results showed that exposure to vitamin D3 decreased the levels of serum creatine, urea nitrogen and urine protein and restored the homeostasis of calcium and parathormone. Vitamin D3 also downregulated the expression of vimentin, collagen I and α-smooth muscle actin and attenuated renal fibrosis and epithelial to mesenchymal transition in the kidney. Importantly, vitamin D3 treatment increased the expression of the vitamin D receptor and inhibited Transforming growth factor-ß1 (TGF-ß1)/Smad3 signaling pathway in rats kidneys with chronic kidney disease. Mechanistically, the upregulation of TGF-ß1 and phosphorylation of Smad3 induced by vitamin D3 was reversed by activation of the vitamin D receptor. Our findings indicated that vitamin D3 is a potential antifibrotic drug in chronic kidney disease via the vitmin D receptor and inhibiting TGF-ß1/Smad3 signaling pathway.


Asunto(s)
Factor de Crecimiento Transformador beta1 , Animales , Colecalciferol , Transición Epitelial-Mesenquimal , Ratas , Receptores de Calcitriol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA