Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 11: 538240, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193307

RESUMEN

Dengue virus infection (DENV-2) is transmitted by infected mosquitoes via the skin, where many dermal and epidermal cells are potentially susceptible to infection. Most of the cells in an area of infection will establish an antiviral microenvironment to control viral replication. Although cumulative studies report permissive DENV-2 infection in dendritic cells, keratinocytes, and fibroblasts, among other cells also infected, little information is available regarding cell-to-cell crosstalk and the effect of this on the outcome of the infection. Therefore, our study focused on understanding the contribution of fibroblast and dendritic cell crosstalk to the control or promotion of dengue. Our results suggest that dendritic cells promote an antiviral state over fibroblasts by enhancing the production of type I interferon, but not proinflammatory cytokines. Infected and non-infected fibroblasts promoted partial dendritic cell maturation, and the fibroblast-matured cells were less permissive to infection and showed enhanced type I interferon production. We also observed that the soluble mediators produced by non-infected or Poly (I:C) transfected fibroblasts induced allogenic T cell proliferation, but mediators produced by DENV-2 infected fibroblasts inhibited this phenomenon. Additionally, the effects of fibroblast soluble mediators on CD14+ monocytes were analyzed to assess whether they affected the differentiation of monocyte derived dendritic cells (moDC). Our data showed that mediators produced by infected fibroblasts induced variable levels of monocyte differentiation into dendritic cells, even in the presence of recombinant GM-CSF and IL-4. Cells with dendritic cell-like morphology appeared in the culture; however, flow cytometry analysis showed that the mediators did not fully downregulate CD14 nor did they upregulate CD1a. Our data revealed that fibroblast-dendritic cell crosstalk promoted an antiviral response mediated manly by type I interferons over fibroblasts. Furthermore, the maturation of dendritic cells and T cell proliferation were promoted, which was inhibited by DENV-2-induced mediators. Together, our results suggest that activation of the adaptive immune response is influenced by the crosstalk of skin resident cells and the intensity of innate immune responses established in the microenvironment of the infected skin.


Asunto(s)
Comunicación Celular/inmunología , Células Dendríticas/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Dermis/inmunología , Fibroblastos/inmunología , Adulto , Antígenos CD1/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Dengue/patología , Dermis/patología , Dermis/virología , Femenino , Fibroblastos/patología , Fibroblastos/virología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Interferón Tipo I/inmunología , Interleucina-4/inmunología , Receptores de Lipopolisacáridos/inmunología , Masculino , Persona de Mediana Edad
2.
Immunol Res ; 64(2): 392-403, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26130295

RESUMEN

When dengue virus (DENV)-infected mosquitoes use their proboscis to probe into human skin during blood feeding, both saliva and virus are released. During this process, cells from the epidermis and dermis layers of the skin, along with small blood vessels, may get exposed to or infected with DENV. In these microenvironments of the skin, the presence of DENV initiates a complex interplay among the DENV-infected and non-infected neighboring cells at the initial bite site. Previous studies suggested that DENV-infected human dermal fibroblasts (HDFs) participate in the immune response against DENV by secreting soluble mediators of innate immunity. In the present study, we investigated whether DENV-infected HDFs activate human dermal microvascular endothelial cells (HDMECs) in co-cultures. Our results suggest that co-cultures of DENV-infected HDFs and HDMECs elicit soluble mediators that are sufficient to reduce viral replication, activate HDMECs, and induce leukocyte migration through HDMEC monolayers. These effects were partly dependent on HDF donor and DENV serotype, which may provide novel insights into the natural variation in host susceptibility to DENV disease.


Asunto(s)
Comunicación Celular , Virus del Dengue/fisiología , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virología , Leucocitos/fisiología , Migración Transendotelial y Transepitelial , Replicación Viral , Adulto , Biomarcadores , Células Cultivadas , Preescolar , Técnicas de Cocultivo , Citocinas/sangre , Citocinas/metabolismo , Dengue/sangre , Dengue/metabolismo , Dengue/virología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Células Epidérmicas , Epidermis/virología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunidad Innata , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Piel/citología , Piel/metabolismo
3.
PLoS Negl Trop Dis ; 5(12): e1420, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22206025

RESUMEN

BACKGROUND: When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times ("probing") before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells. METHODOLOGY/PRINCIPAL FINDINGS: Fibroblasts freshly released from healthy skin and infected 12 hours after their isolation show a positive signal for DENV. In addition, when primary skin fibroblast cultures were established and subsequently infected, we showed DENV-2 antigen-positive intracellular signal at 24 hours and 48 hours post-infection. Moreover, the fibroblasts showed productive infection in a conventional plaque assay. The skin fibroblasts infected with DENV-2 underwent potent signaling through both TLR3 and RIG- 1, but not Mda5, triggering up-regulation of IFNß, TNFα, defensin 5 (HB5) and ß defensin 2 (HßD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 (IRF7), when compared with mock-infected fibroblasts. CONCLUSIONS/SIGNIFICANCE: In this work, we demonstrated the high susceptibility to DENV infection by primary fibroblasts from normal human skin, both in situ and in vitro. Our results suggest that these cells may contribute to the pro-inflammatory and anti-viral microenvironment in the early stages of interaction with DENV-2. Furthermore, the data suggest that fibroblast may also be used as a primary site of DENV replication and provide viral particles that may contribute to subsequent viral dissemination.


Asunto(s)
Virus del Dengue/inmunología , Fibroblastos/inmunología , Fibroblastos/virología , Inmunidad Innata , Células Cultivadas , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Interferones/inmunología , Interferones/metabolismo , Microscopía Fluorescente , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Piel/citología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Ensayo de Placa Viral , Replicación Viral , beta-Defensinas/inmunología , beta-Defensinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA