Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EMBO J ; 29(5): 871-83, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20134403

RESUMEN

The sequential action of five distinct endosomal-sorting complex required for transport (ESCRT) complexes is required for the lysosomal downregulation of cell surface receptors through the multivesicular body (MVB) pathway. On endosomes, the assembly of ESCRT-III is a highly ordered process. We show that the length of ESCRT-III (Snf7) oligomers controls the size of MVB vesicles and addresses how ESCRT-II regulates ESCRT-III assembly. The first step of ESCRT-III assembly is mediated by Vps20, which nucleates Snf7/Vps32 oligomerization, and serves as the link to ESCRT-II. The ESCRT-II subunit Vps25 induces an essential conformational switch that converts inactive monomeric Vps20 into the active nucleator for Snf7 oligomerization. Each ESCRT-II complex contains two Vps25 molecules (arms) that generate a characteristic Y-shaped structure. Mutant 'one-armed' ESCRT-II complexes with a single Vps25 arm are sufficient to nucleate Snf7 oligomerization. However, these oligomers cannot execute ESCRT-III function. Both Vps25 arms provide essential geometry for the assembly of a functional ESCRT-III complex. We propose that ESCRT-II serves as a scaffold that nucleates the assembly of two Snf7 oligomers, which together are required for cargo sequestration and vesicle formation during MVB sorting.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatografía en Gel , Endosomas/metabolismo , Microscopía Electrónica de Transmisión , Unión Proteica , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Espectrometría de Fluorescencia
2.
Proc Natl Acad Sci U S A ; 106(31): 12700-5, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19549836

RESUMEN

Peripheral membrane proteins of the Bin/amphiphysin/Rvs (BAR) and Fer-CIP4 homology-BAR (F-BAR) family participate in cellular membrane trafficking and have been shown to generate membrane tubules. The degree of membrane bending appears to be encoded in the structure and immanent curvature of the particular protein domains, with BAR and F-BAR domains inducing high- and low-curvature tubules, respectively. In addition, oligomerization and the formation of ordered arrays influences tubule stabilization. Here, the F-BAR domain-containing protein Pacsin was found to possess a unique activity, creating small tubules and tubule constrictions, in addition to the wide tubules characteristic for this subfamily. Based on crystal structures of the F-BAR domain of Pacsin and mutagenesis studies, vesiculation could be linked to the presence of unique structural features distinguishing it from other F-BAR proteins. Tubulation was suppressed in the context of the full-length protein, suggesting that Pacsin is autoinhibited in solution. The regulated deformation of membranes and promotion of tubule constrictions by Pacsin suggests a more versatile function of these proteins in vesiculation and endocytosis beyond their role as scaffold proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Membrana Celular/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Cristalización , Endocitosis , Humanos , Liposomas/metabolismo , Estructura Terciaria de Proteína
3.
Traffic ; 9(5): 786-97, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18331383

RESUMEN

The mechanism of coat protein (COP)II vesicle fission from the endoplasmic reticulum (ER) remains unclear. Lysophospholipid acyltransferases (LPATs) catalyze the conversion of various lysophospholipids to phospholipids, a process that can promote spontaneous changes in membrane curvature. Here, we show that 2,2-methyl-N-(2,4,6,-trimethoxyphenyl)dodecanamide (CI-976), a potent LPAT inhibitor, reversibly inhibited export from the ER in vivo and the formation of COPII vesicles in vitro. Moreover, CI-976 caused the rapid and reversible accumulation of cargo at ER exit sites (ERESs) containing the COPII coat components Sec23/24 and Sec13/31 and a marked enhancement of Sar1p-mediated tubule formation from ERESs, suggesting that CI-976 inhibits the fission of assembled COPII budding elements. These results identify a small molecule inhibitor of a very late step in COPII vesicle formation, consistent with fission inhibition, and demonstrate that this step is likely facilitated by an ER-associated LPAT.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/antagonistas & inhibidores , Anilidas/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Línea Celular , Guanosina Trifosfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Transporte de Proteínas/fisiología , Ratas , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas del Envoltorio Viral/metabolismo
4.
Biochem Biophys Res Commun ; 389(3): 473-7, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19747452

RESUMEN

Previous studies have shown that treatment of mammalian cells with phospholipase A(2) (PLA(2)) antagonists cause the normally interconnected Golgi ribbon to break up into large fragments of stacked Golgi cisternae ("mini-stacks") that remain located in the juxtanuclear region. Using the reversible PLA(2) antagonist, ONO-RS-082 (ONO) and live-cell, time-lapse microscopy to image the Golgi reassembly process, we found that Golgi mini-stacks underwent a burst of membrane tubule formation following washout of ONO: before washout only 4.3+/-3.8 tubules/cell/10 min were formed, whereas after washout 29.9+/-11.9 tubules/cell/10 min formed. These membranes tubules formed bridges between physically separate mini-stacks, thus mediating their coalescence into intact Golgi ribbons. Formation of inter-stack tubules and an intact Golgi ribbon was also facilitated by microtubules because treatment with nocodazole significantly inhibited both processes. This microtubule-dependent process was also dependent on dynein because the dynein inhibitor nordihydroguaiaretic acid (NDGA) inhibited reassembly. These studies show that a late stage of Golgi assembly occurs via membrane tubules, whose formation is dependent on PLA(2) activity and microtubules. Considering these results together, we concluded that the maintenance and assembly of normal Golgi architecture is dependent on the PLA(2)-mediated, dynamic formation of inter-Golgi membrane tubules.


Asunto(s)
Membrana Celular/metabolismo , Dineínas/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Fosfolipasas A2/metabolismo , Aminobenzoatos/farmacología , Clorobenzoatos , Cinamatos/farmacología , Dineínas/antagonistas & inhibidores , Aparato de Golgi/enzimología , Células HeLa , Humanos , Masoprocol/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfolipasa A2 , ortoaminobenzoatos
5.
Mol Biol Cell ; 22(13): 2348-59, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21593204

RESUMEN

Previous studies have shown that membrane tubule-mediated export from endosomal compartments requires a cytoplasmic phospholipase A(2) (PLA(2)) activity. Here we report that the cytoplasmic PLA(2) enzyme complex platelet-activating factor acetylhydrolase (PAFAH) Ib, which consists of α1, α2, and LIS1 subunits, regulates the distribution and function of endosomes. The catalytic subunits α1 and α2 are located on early-sorting endosomes and the central endocytic recycling compartment (ERC) and their overexpression, but not overexpression of their catalytically inactive counterparts, induced endosome membrane tubules. In addition, overexpression α1 and α2 altered normal endocytic trafficking; transferrin was recycled back to the plasma membrane directly from peripheral early-sorting endosomes instead of making an intermediate stop in the ERC. Consistent with these results, small interfering RNA-mediated knockdown of α1 and α2 significantly inhibited the formation of endosome membrane tubules and delayed the recycling of transferrin. In addition, the results agree with previous reports that PAFAH Ib α1 and α2 expression levels affect the distribution of endosomes within the cell through interactions with the dynein regulator LIS1. These studies show that PAFAH Ib regulates endocytic membrane trafficking through novel mechanisms involving both PLA(2) activity and LIS1-dependent dynein function.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Microtúbulos/metabolismo , Fosfolipasas A2/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Membrana Celular/metabolismo , Citoplasma/metabolismo , Dineínas/metabolismo , Endocitosis/fisiología , Endosomas/genética , Células HeLa , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Subunidades de Proteína , Transporte de Proteínas , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA