Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 78(5): 876-889.e6, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32502422

RESUMEN

Many microRNAs (miRNAs) are generated from primary transcripts containing multiple clustered stem-loop structures that are thought to be recognized and cleaved by the Microprocessor complex as independent units. Here, we uncover an unexpected mode of processing of the bicistronic miR-15a-16-1 cluster. We find that the primary miR-15a stem-loop is not processed on its own but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage and describe SAFB2 as an accessory protein of the Microprocessor. Notably, SAFB2-mediated cleavage expands to other clustered pri-miRNAs, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal Microprocessor substrates in clustered primary miRNA transcripts.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , MicroARNs/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Secuencias Invertidas Repetidas/genética , Secuencias Invertidas Repetidas/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , MicroARNs/genética , Proteínas Asociadas a Matriz Nuclear/genética , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Estrógenos/genética
2.
Gut ; 73(8): 1376-1387, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38777571

RESUMEN

BACKGROUND: Metabolic disorders and inflammatory bowel diseases (IBD) have captured the globe during Westernisation of lifestyle and related dietary habits over the last decades. Both disease entities are characterised by complex and heterogeneous clinical spectra linked to distinct symptoms and organ systems which, on a first glimpse, do not have many commonalities in clinical practice. However, experimental studies indicate a common backbone of inflammatory mechanisms in metabolic diseases and gut inflammation, and emerging clinical evidence suggests an intricate interplay between metabolic disorders and IBD. OBJECTIVE: We depict parallels of IBD and metabolic diseases, easily overlooked in clinical routine. DESIGN: We provide an overview of the recent literature and discuss implications of metabolic morbidity in patients with IBD for researchers, clinicians and healthcare providers. CONCLUSION: The Western lifestyle and diet and related gut microbial perturbation serve as a fuel for metabolic inflammation in and beyond the gut. Metabolic disorders and the metabolic syndrome increasingly affect patients with IBD, with an expected negative impact for both disease entities and risk for complications. This concept implies that tackling the obesity pandemic exerts beneficial effects beyond metabolic health.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Enfermedades Metabólicas , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Metabólicas/complicaciones , Microbioma Gastrointestinal/fisiología , Síndrome Metabólico/complicaciones , Estilo de Vida , Obesidad/complicaciones
3.
Gastroenterology ; 163(2): 495-506.e8, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35508284

RESUMEN

BACKGROUND & AIMS: The coronavirus disease 2019 (COVID-19) pandemic has affected populations, societies, and lives for more than 2 years. Long-term sequelae of COVID-19, collectively termed the postacute COVID-19 syndrome, are rapidly emerging across the globe. Here, we investigated whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen persistence underlies the postacute COVID-19 syndrome. METHODS: We performed an endoscopy study with 46 patients with inflammatory bowel disease (IBD) 219 days (range, 94-257) after a confirmed COVID-19 infection. SARS-CoV-2 antigen persistence was assessed in the small and large intestine using quantitative polymerase chain reaction of 4 viral transcripts, immunofluorescence of viral nucleocapsid, and virus cultivation from biopsy tissue. Postacute COVID-19 was assessed using a standardized questionnaire, and a systemic SARS-CoV-2 immune response was evaluated using flow cytometry and enzyme-linked immunosorbent assay at endoscopy. IBD activity was evaluated using clinical, biochemical, and endoscopic means. RESULTS: We report expression of SARS-CoV-2 RNA in the gut mucosa ∼7 months after mild acute COVID-19 in 32 of 46 patients with IBD. Viral nucleocapsid protein persisted in 24 of 46 patients in gut epithelium and CD8+ T cells. Expression of SARS-CoV-2 antigens was not detectable in stool and viral antigen persistence was unrelated to severity of acute COVID-19, immunosuppressive therapy, and gut inflammation. We were unable to culture SARS-CoV-2 from gut tissue of patients with viral antigen persistence. Postacute sequelae of COVID-19 were reported from the majority of patients with viral antigen persistence, but not from patients without viral antigen persistence. CONCLUSION: Our results indicate that SARS-CoV-2 antigen persistence in infected tissues serves as a basis for postacute COVID-19. The concept that viral antigen persistence instigates immune perturbation and postacute COVID-19 requires validation in controlled clinical trials.


Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Antígenos Virales , Linfocitos T CD8-positivos , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , ARN Viral , SARS-CoV-2
4.
Gastroenterology ; 162(6): 1690-1704, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35031299

RESUMEN

BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.


Asunto(s)
Enfermedad de Crohn , Enteritis , Ácidos Grasos Omega-3 , Animales , Enfermedad de Crohn/tratamiento farmacológico , Endorribonucleasas , Enteritis/inducido químicamente , Enteritis/tratamiento farmacológico , Ácidos Grasos Insaturados , Humanos , Inflamación/tratamiento farmacológico , Ratones , Proteínas Serina-Treonina Quinasas , Receptor Toll-Like 2
5.
Gut ; 70(10): 1978-1988, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34145045

RESUMEN

The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn's disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.


Asunto(s)
Biomarcadores/metabolismo , Heces/química , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Algoritmos , Humanos , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad
7.
Biomolecules ; 14(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38672492

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most common liver disease worldwide in recent years. MASLD commonly presents as simple hepatic steatosis, but ~25% of patients develop liver inflammation, progressive fibrosis, liver cirrhosis and related hepatocellular carcinoma. Liver inflammation and the degree of fibrosis are key determinants of the prognosis. The pathophysiology of liver inflammation is incompletely understood and involves diverse factors and specifically innate and adaptive immune responses. More specifically, diverse mediators of innate immunity such as proinflammatory cytokines, adipokines, inflammasomes and various cell types like mononuclear cells, macrophages and natural killer cells are involved in directing the inflammatory process in MASLD. The activation of innate immunity is driven by various factors including excess lipids and lipotoxicity, insulin resistance and molecular patterns derived from gut commensals. Targeting pathways of innate immunity might therefore appear as an attractive therapeutic strategy in the future management of MASLD and possibly its complications.


Asunto(s)
Inmunidad Innata , Humanos , Animales , Hígado Graso/inmunología , Inflamasomas/inmunología , Inflamasomas/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Resistencia a la Insulina/inmunología , Inflamación/inmunología
8.
JHEP Rep ; 5(11): 100872, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37818230

RESUMEN

Background & Aims: Alcohol-related liver disease (ALD) is a global healthcare challenge with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a synthetic bile acid with anti-inflammatory properties in experimental and human cholestatic liver diseases. In the present study, we explored the efficacy of norUDCA in experimental ALD. Methods: NorUDCA was tested in a preventive and therapeutic setting in an experimental ALD model (Lieber-DeCarli diet enriched with ethanol). Liver disease was phenotypically evaluated using histology and biochemical methods, and anti-inflammatory properties and peroxisome proliferator-activated receptor gamma activation by norUDCA were evaluated in cellular model systems. Results: NorUDCA administration ameliorated ethanol-induced liver injury, reduced hepatocyte death, and reduced the expression of hepatic pro-inflammatory cytokines including tumour necrosis factor (Tnf), Il-1ß, Il-6, and Il-10. NorUDCA shifted hepatic macrophages towards an anti-inflammatory M2 phenotype. Further, norUDCA administration altered the composition of the intestinal microbiota, specifically increasing the abundance of Roseburia, Enterobacteriaceae, and Clostridum spp. In a therapeutic model, norUDCA also ameliorated ethanol-induced liver injury. Moreover, norUDCA suppressed lipopolysaccharide-induced IL-6 expression in human peripheral blood mononuclear cells and evoked peroxisome proliferator-activated receptor gamma activation. Conclusions: NorUDCA ameliorated experimental ALD, protected against hepatic inflammation, and affected gut microbial commensalism. NorUDCA could serve as a novel therapeutic agent in the future management of patients with ALD. Impact and implications: Alcohol-related liver disease is a global healthcare concern with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a modified bile acid, which was proven to be effective in human cholestatic liver diseases. In the present study, we found a protective effect of norUDCA in experimental alcoholic liver disease. For patients with ALD, norUDCA could be a potential new treatment option.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA