Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Immunother Cancer ; 12(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009452

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) poses unique challenges due to its complex nature and the need for more effective treatments. Recent studies showed encouraging outcomes from combining paclitaxel (PTX) with programmed cell death protein-1 (PD-1) blockade in treating TNBC, although the exact mechanisms behind the improved results are unclear. METHODS: We employed an integrated approach, analyzing spatial transcriptomics and single-cell RNA sequencing data from TNBC patients to understand why the combination of PTX and PD-1 blockade showed better response in TNBC patients. We focused on toll-like receptor 4 (TLR4), a receptor of PTX, and its role in modulating the cross-presentation signaling pathways in tumor-associated macrophages (TAMs) within the tumor microenvironment. Leveraging insights obtained from patient-derived data, we conducted in vitro experiments using immunosuppressive bone marrow-derived macrophages (iBMDMs) to validate if PTX could augment the cross-presentation and phagocytosis activities. Subsequently, we extended our study to an in vivo murine model of TNBC to ascertain the effects of PTX on the cross-presentation capabilities of TAMs and its downstream impact on CD8+ T cell-mediated immune responses. RESULTS: Data analysis from TNBC patients revealed that the activation of TLR4 and cross-presentation signaling pathways are crucial for the antitumor efficacy of PTX. In vitro studies showed that PTX treatment enhances the cross-presentation ability of iBMDMs. In vivo experiments demonstrated that PTX activates TLR4-dependent cross-presentation in TAMs, improving CD8+ T cell-mediated antitumor responses. The efficacy of PTX in promoting antitumor immunity was elicited when combined with PD-1 blockade, suggesting a complementary interaction. CONCLUSIONS: This study reveals how PTX boosts the effectiveness of PD-1 inhibitors in treating TNBC. We found that PTX activates TLR4 signaling in TAMs. This activation enhances their ability to present antigens, thereby boosting CD8+ T cell antitumor responses. These findings not only shed light on PTX's immunomodulatory role in TNBC but also underscore the potential of targeting TAMs' antigen presentation capabilities in immunotherapy approaches.


Asunto(s)
Paclitaxel , Neoplasias de la Mama Triple Negativas , Macrófagos Asociados a Tumores , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Humanos , Femenino , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Ratones , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral
2.
Pharmaceutics ; 15(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36839647

RESUMEN

Extracellular vesicles (EVs) are nanovesicles that are naturally released from cells in a lipid bilayer-bound form. A subset population with a size of 200 nm, small EVs (sEVs), is enticing in many ways. Initially perceived as mere waste receptacles, sEVs have revealed other biological functions, such as cell-to-cell signal transduction and communication. Besides their notable biological functions, sEVs have profound advantages as future drug modalities: (i) excellent biocompatibility, (ii) high stability, and (iii) the potential to carry undruggable macromolecules as cargo. Indeed, many biopharmaceutical companies are utilizing sEVs, not only as diagnostic biomarkers but as therapeutic drugs. However, as all inchoate fields are challenging, there are limitations and hindrances in the clinical translation of sEV therapeutics. In this review, we summarize different types of sEV therapeutics, future improvements, and current strategies in large-scale production.

3.
J Control Release ; 331: 321-334, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33434599

RESUMEN

Cancer immunotherapy (CI) represented by immune checkpoint inhibitors (ICIs) presents a new paradigm for cancer treatment. However, the types of cancer that attain a therapeutic benefit from ICIs are limited, and the efficacy of these treatments does not meet expectations. To date, research on ICIs has mainly focused on identifying biomarkers and patient characteristics that can enhance the therapeutic effect on tumors. However, studies on combinational strategies for CI are being actively conducted to overcome the resistance to ICI treatment. Moreover, it has been confirmed that dramatic anticancer effects are achieved through "neoadjuvant" immunotherapy with ICIs in treatment-naïve cancer patients; consequently, it has become necessary to consider how to best apply cancer immunotherapies for patients, even with respect to their tumor stages. In this review, we sought to discuss the right timing of ICI treatment in consideration of the progression of cancer with a changing tumor-immune microenvironment. Furthermore, we investigated which types of combinational treatments and their corresponding sequences of administration could optimize the therapeutic effect of ICIs to expand the applicable target of ICIs and increase their therapeutic efficacy. Finally, we discussed several delivery pathways and methods that can maximize the effect of ICIs.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico , Factores Inmunológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
4.
Cancer Lett ; 522: 198-210, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571082

RESUMEN

The purpose of this study was to determine whether statins can enhance anticancer effects in head and neck squamous cell carcinoma (HNSCC) when used with cisplatin and act as immunogenic cell death (ICD) inducers that can be used in cancer immunotherapy. Statins alone showed both in vitro and in vivo inhibitory effects against HNSCC, and synergistic antitumor effects were observed when combined with cisplatin in a syngeneic murine HNSCC model. Statins increased calreticulin exposure and endoplasmic reticulum stress-related signals in HNSCC cells. In addition, it was confirmed that statins could activate antigen-presenting cells and tumor-specific CD8+ T cells with an increase in their numbers in the tumor tissues and draining lymph nodes, with this effect showing significant improvement following the combination therapy with cisplatin. Moreover, in triple combination with both cisplatin and anti-programmed cell death 1 receptor (anti-PD-1) antibody, statins dramatically induced further tumor eradication and improved the survival of tumor-bearing mice. Taken together, these results demonstrate that statins, administered in combination with anti-PD-1 antibody, could enhance the anticancer effect of cisplatin and potentiate the efficacy of immunotherapy for HNSCC and present a rationale for repurposing statins as an adjuvant immunotherapeutic option for HNSCC.


Asunto(s)
Cisplatino/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Anticuerpos Antiidiotipos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Inmunoterapia , Ratones , Receptor de Muerte Celular Programada 1/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34330763

RESUMEN

BACKGROUND: Statins preferentially promote tumor-specific apoptosis by depleting isoprenoid such as farnesyl pyrophosphate and geranylgeranyl pyrophosphate. However, statins have not yet been approved for clinical cancer treatment due, in part, to poor understanding of molecular determinants on statin sensitivity. Here, we investigated the potential of statins to elicit enhanced immunogenicity of KRAS-mutant (KRASmut) tumors. METHODS: The immunogenicity of treated cancer cells was determined by western blot, flow cytometry and confocal microscopy. The immunotherapeutic efficacy of mono or combination therapy using statin was assessed in KRASmut tumor models, including syngeneic colorectal cancer and genetically engineered lung and pancreatic tumors. Using NanoString analysis, we analyzed how statin influenced the gene signatures associated with the antigen presentation of dendritic cells in vivo and evaluated whether statin could induce CD8+ T-cell immunity. Multiplex immunohistochemistry was performed to better understand the complicated tumor-immune microenvironment. RESULTS: Statin-mediated inhibition of KRAS prenylation provoked severe endoplasmic reticulum (ER) stress by attenuating the anti-ER stress effect of KRAS mutation, thereby resulting in the immunogenic cell death (ICD) of KRASmut cancer cells. Moreover, statin-mediated ICD enhanced the cross-priming ability of dendritic cells, thereby provoking CD8+ T-cell immune responses against KRASmut tumors. Combination therapy using statin and oxaliplatin, an ICD inducer, significantly enhanced the immunogenicity of KRASmut tumors and promoted tumor-specific immunity in syngeneic and genetically engineered KRASmut tumor models. Along with immune-checkpoint inhibitors, the abovementioned combination therapy overcame resistance to PD-1 blockade therapies, improving the survival rate of KRASmut tumor models. CONCLUSIONS: Our findings suggest that KRAS mutation could be a molecular target for statins to elicit potent tumor-specific immunity.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/efectos de los fármacos , Animales , Humanos , Masculino , Ratones , Mutación , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA