RESUMEN
Van der Waals heterostructures with two-dimensional magnets offer a magnetic junction with an atomically sharp and clean interface. This attribute ensures that the magnetic layers maintain their intrinsic spin-polarized electronic states and spin-flipping scattering processes at a minimum level, a trait that can expand spintronic device functionalities. Here, using a van der Waals assembly of ferromagnetic Fe3GeTe2 with non-magnetic hexagonal boron nitride and WSe2 layers, we demonstrate electrically tunable, highly transparent spin injection and detection across the van der Waals interfaces. By varying an electrical bias, the net spin polarization of the injected carriers can be modulated and reversed in polarity, which leads to sign changes of the tunnelling magnetoresistance. We attribute the spin polarization reversals to sizable contributions from high-energy localized spin states in the metallic ferromagnet, so far inaccessible in conventional magnetic junctions. Such tunability of the spin-valve operations opens a promising route for the electronic control of next-generation low-dimensional spintronic device applications.
RESUMEN
High mobility single and few-layer graphene sheets are in many ways attractive as nanoelectronic circuit hosts but lack energy gaps, which are essential to the operation of field-effect transistors. One of the methods used to create gaps in the spectrum of graphene systems is to form long period moiré patterns by aligning the graphene and hexagonal boron nitride ( h-BN) substrate lattices. Here, we use planar tunneling devices with thin h-BN barriers to obtain direct and accurate tunneling spectroscopy measurements of the energy gaps in single-layer and bilayer graphene- h-BN superlattice structures at charge neutrality (first Dirac point) and at integer moiré band occupancies (second Dirac point, SDP) as a function of external electric and magnetic fields and the interface twist angle. In single-layer graphene, we find, in agreement with previous work, that gaps are formed at neutrality and at the hole-doped SDP, but not at the electron-doped SDP. Both primary and secondary gaps can be determined accurately by extrapolating Landau fan patterns to a zero magnetic field and are as large as ≈17 meV for devices in near-perfect alignment. For bilayer graphene, we find that gaps occur only at charge neutrality where they can be modified by an external electric field.
RESUMEN
The chemical and mechanical stability of hexagonal boron nitride (h-BN) thin films and their compatibility with other free-standing two-dimensional (2D) crystals to form van der Waals heterostructures make the h-BN-2D tunnel junction an intriguing experimental platform not only for the engineering of specific device functionalities but also for the promotion of quantum measurement capabilities. Here, we exploit the h-BN-graphene tunnel junction to directly probe the electronic structures of single-layer and bilayer graphene in the presence and the absence of external magnetic fields with unprecedented high signal-to-noise ratios. At a zero magnetic field, we identify the tunneling spectra related to the charge neutrality point and the opening of the electric-field-induced bilayer energy gap. In the quantum Hall regime, the quantization of 2D electron gas into Landau levels (LL) is seen as early as 0.2 T, and as many as 30 well-separated LL tunneling conductance oscillations are observed for both electron- and hole-doped regions. Our device simulations successfully reproduce the experimental observations. Additionally, we extract the relative permittivity of three-to-five layer h-BN and find that the screening capability of thin h-BN films is as much as 60% weaker than bulk h-BN.
RESUMEN
We have investigated fractional quantum Hall (QH) states in Bernal-stacked bilayer graphene using transconductance fluctuation measurements. A variety of odd-denominator fractional QH states with νQH â νQH + 2 symmetry, as previously reported, are observed. However, surprising is that also particle-hole symmetric states are clearly resolved in the same measurement set. We attribute their emergence to the reversal of orbital states in the octet level scheme induced by a strong local charge imbalance, which can be captured by the transconductance fluctuations. Also the even-denominator fractional QH state at filling -1/2 is observed. However, contrary to a previous study on a suspended graphene layer [ Ki et al. Nano Lett. 2014, 14 , 2135 ], the particle-hole symmetric state at filling 1/2 is detected as well. These observations suggest that the stability of both odd and even denominator fractional QH states is very sensitive to local transverse electric fields in bilayer graphene.
RESUMEN
The relation between macroscopic charge transport properties and microscopic carrier distribution is one of the central issues in the physics and future applications of graphene devices (GDs). We find strong conductance enhancement at the edges of GDs using scanning gate microscopy. This result is explained by our theoretical model of the opening of an additional conduction channel localized at the edges by depleting accumulated charge by the tip.
RESUMEN
In graphene, as in most metals, electron-electron interactions renormalize the properties of electrons but leave them behaving like noninteracting quasiparticles. Many measurements probe the renormalized properties of electrons right at the Fermi energy. Uniquely for graphene, the accessibility of the electrons at the surface offers the opportunity to use scanned probe techniques to examine the effect of interactions at energies away from the Fermi energy, over a broad range of densities, and on a local scale. Using scanning tunneling spectroscopy, we show that electron interactions leave the graphene energy dispersion linear as a function of excitation energy for energies within ±200 meV of the Fermi energy. However, the measured dispersion velocity depends on density and increases strongly as the density approaches zero near the charge neutrality point, revealing a squeezing of the Dirac cone due to interactions.
RESUMEN
Photogenerated charge transport in bulk heterojunction (BHJ) solar cells is strongly dependent on the active layer nanomorphology resulting from phase segregation. Here, we systematically study the nanoscale photocurrent response from BHJs based on poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester (P3HT-PCBM) with a photoconductive atomic force microscope (PCAFM). The photocurrent is either collected directly by the tip or through nanopatterned metal contacts. The photoresponse measured at the top surface shows significant inhomogeneity on the length scale of 100-500 nm with large low-efficiency regions, consistent with existence of a P3HT-rich skin layer of approximately 10 nm thick. The measurements with the nanocontacts validate the PCAFM results and demonstrate that the inhomogeneity averages to the conventional device result. Additionally, we use an ultralow angle microtomy (ULAM) technique to slice the active layer and create wedges along these cuts for probing of nanomorphology in the bulk. AFM images show a striking contrast between the top surface and the ULAM exposed material, revealing much finer features related to phase segregation below the skin layer and sub-100 nm length scales for charge transport.
Asunto(s)
Suministros de Energía Eléctrica , Nanotecnología/instrumentación , Energía Solar , Relación Dosis-Respuesta en la Radiación , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dosis de RadiaciónRESUMEN
Electron-phonon scatterings in solid-state systems are pivotal processes in determining many key physical quantities such as charge carrier mobilities and thermal conductivities. Here, we report direct probing of phonon mode specific electron-phonon scatterings in layered semiconducting transition metal dichalcogenides WSe2, MoSe2, WS2, and MoS2 through inelastic electron tunneling spectroscopy measurements, quantum transport simulations, and density functional calculation. We experimentally and theoretically characterize momentum-conserving single- and two-phonon electron-phonon scatterings involving up to as many as eight individual phonon modes in mono- and bilayer films, among which transverse, longitudinal acoustic and optical, and flexural optical phonons play significant roles in quantum charge flows. Moreover, the layer-number sensitive higher-order inelastic electron-phonon scatterings, which are confirmed to be generic in all four semiconducting layers, can be attributed to differing electronic structures, symmetry, and quantum interference effects during the scattering processes in the ultrathin semiconducting films.
RESUMEN
The energy band alignments and associated material properties at the contacts between metal and two-dimensional (2D) semiconducting transition metal dichalcogenide (SCTMD) films determine the important traits in 2D SCTMD-based electronic and optical device applications. In this work, we realize 2D vertical diodes with asymmetric metal-SCTMD contact areas where currents are dominated by the contact-limited charge flows in the transport regimes of Fowler-Nordheim tunneling and Schottky emission. With straightforward current-voltage characteristics, we can accurately evaluate the interface parameters such as Schottky barrier heights and the vertical effective masses of tunneling charges. In particular, the differing contact areas and resultant current rectifications allow us to address specific Schottky barrier locations with respect to the conduction and valence band edges of 2D semiconducting WSe2, WS2, MoSe2, and MoS2, thereby determining whether p-type holes or n-type electrons become the majority charge carriers in the SCTMD devices. We demonstrate that our experimental and analytical approaches can be utilized as a simple but powerful material metrology to qualitatively and quantitatively evaluate various metal-SCTMD contacts.
RESUMEN
Although single-layer transition-metal dichalcogenides with novel valley functionalities are a promising candidate to realize valleytronic devices, the essential understanding of valley depolarization mechanisms is still incomplete. Based on pump-probe experiments performed for MoSe2 and WSe2 monolayers and corroborating analysis from density functional calculations, we demonstrate that coherent phonons at the K-point of the Brillouin zone can effectively mediate the valley transfer of electron carriers. In the MoSe2 monolayer case, we identify this mode as the flexural acoustic ZA(K) mode, which has broken inversion symmetry and thus can enable electron spin-flip during valley transfer. On the other hand, in the monolayer WSe2 case where spin-preserving inter-valley relaxations are preferred, coherent LA(K) phonons with even inversion symmetry are efficiently generated. These findings establish that while the specifics of inter-valley relaxations depend on the spin alignments of energy bands, the K-point phonons should be taken into account as an effective valley depolarization pathway in transition metal dichalcogenide monolayers.
RESUMEN
Interfacial bubbles are unintentionally created during the transfer of atomically thin 2D layers, a required process in the fabrication of van der Waals heterostructures. By encapsulating a WSe2 monolayer in hBN, we study the differing photoluminescence (PL) properties of the structure resulting from bubble formation. Based on the differentiated absorption probabilities at the bubbles compared to the pristine areas, we demonstrate that the visibility of the bubbles in PL mapping is enhanced when the photoexcitation wavelength lies between the n = 1 and n = 2 resonances of the A-exciton. An appropriate choice of detection window, which includes localized exciton emission but excludes free exciton emission, further improves bubble imaging capability. The interfacial position dependence of the bubbles, whether they are located above or below the WSe2 monolayer, gives rise to measurable consequences in the PL shape.
RESUMEN
Assessing atomic defect states and their ramifications on the electronic properties of two-dimensional van der Waals semiconducting transition metal dichalcogenides (SC-TMDs) is the primary task to expedite multi-disciplinary efforts in the promotion of next-generation electrical and optical device applications utilizing these low-dimensional materials. Here, with electron tunneling and optical spectroscopy measurements with density functional theory, we spectroscopically locate the mid-gap states from chalcogen-atom vacancies in four representative monolayer SC-TMDs-WS2, MoS2, WSe2, and MoSe2-, and carefully analyze the similarities and dissimilarities of the atomic defects in four distinctive materials regarding the physical origins of the missing chalcogen atoms and the implications to SC-mTMD properties. In addition, we address both quasiparticle and optical energy gaps of the SC-mTMD films and find out many-body interactions significantly enlarge the quasiparticle energy gaps and excitonic binding energies, when the semiconducting monolayers are encapsulated by non-interacting hexagonal boron nitride layers.
RESUMEN
Spin polarization of electrons through transition metal dichalcogenides (TMDs) from ferromagnetic metals (FMs) is a fascinating phenomenon in condensed matter physics. The spin polarized current makes high- and low-resistance states in FM/TMDs/FM junctions depending on magnetization alignment of FM electrodes. We have manifested vertical spin valve junctions by incorporating MoS2 layers of different thicknesses by an ultraclean fabrication method. The current-voltage (I-V) characteristics show the ohmic contact behavior, indicating that mono-, bi-, and tri-layer MoS2 work as conducting thin film. In contrast, FM/multilayer MoS2/FM junction shows non-linear I-V characteristics and the junction resistance increases as the temperature is lowered, indicating that multilayer MoS2 provides a tunneling barrier between FM electrodes. We have found that the magnetoresistance (MR) ratio increases gradually as the thickness of the MoS2 layer is increased. Our investigation will provide a guide to make an optimal choice in the development of magnetic tunnel junctions with two-dimensional layered TMDs.
RESUMEN
Precise doping-profile engineering in van der Waals heterostructures is a key element to promote optimal device performance in various electrical and optical applications with two-dimensional layered materials. Here, we report tungsten diselenide- (WSe2) based pure vertical diodes with atomically defined p-, i- and n-channel regions. Externally modulated p- and n-doped layers are respectively formed on the bottom and the top facets of WSe2 single crystals by direct evaporations of high and low work-function metals platinum and gadolinium, thus forming atomically sharp p-i-n heterojunctions in the homogeneous WSe2 layers. As the number of layers increases, charge transport through the vertical WSe2 p-i-n heterojunctions is characterized by a series of quantum tunneling events; direct tunneling, Fowler-Nordheim tunneling, and Schottky emission tunneling. With optimally selected WSe2 thickness, our vertical heterojunctions show superb diode characteristics of an unprecedentedly high current density and low turn-on voltages while maintaining good current rectification.
RESUMEN
We investigated the homogeneity and tolerance to heat of monolayer MoS2 using photoluminescence (PL) spectroscopy. For MoS2 on SiO2, the PL spectra of the basal plane differ from those of the edge, but MoS2 on hexagonal boron nitride (h-BN) was electron-depleted with a homogeneous PL spectra over the entire area. Annealing at 450 °C rendered MoS2 on SiO2 homogeneously electron-depleted over the entire area by creating numerous defects; moreover, annealing at 550 °C and subsequent laser irradiation on the MoS2 monolayer caused a loss of its inherent crystal structure. On the other hand, monolayer MoS2 on h-BN was preserved up to 550 °C with its PL spectra not much changed compared with MoS2 on SiO2. We performed an experiment to qualitatively compare the binding energies between various layers, and discuss the tolerance of monolayer MoS2 to heat on the basis of interlayer/interfacial binding energy.
RESUMEN
Graphene bubbles are often formed when graphene and other layered two-dimensional materials are vertically stacked as van der Waals heterostructures. Here, we investigate how graphene bubbles and their related disorder impact the quantum transport behavior of graphene in the absence and presence of external magnetic fields. By combining experimental observations and numerical simulations, we find that the disorder induced by the graphene bubbles is mainly from p-type dopants and the charge transport in pristine graphene can be severely influenced by the presence of bubbles via long- and short-range scattering even with a small bubble-coverage of 2% and below. Upon bubble density increase, we observe an overall decrease in carrier mobility, and the appearance of a second Dirac point on the electron carrier side. At high magnetic fields, the disorder from graphene bubbles primarily impacts the quantization of the lowest Landau level, resulting in quantum Hall features associated with a new Dirac cone at high charge carrier density.
RESUMEN
Twisted bilayer graphene offers a unique bilayer two-dimensional-electron system where the layer separation is only in sub-nanometer scale. Unlike Bernal-stacked bilayer, the layer degree of freedom is disentangled from spin and valley, providing eight-fold degeneracy in the low energy states. We have investigated broken-symmetry quantum Hall (QH) states and their transitions due to the interplay of the relative strength of valley, spin and layer polarizations in twisted bilayer graphene. The energy gaps of the broken-symmetry QH states show an electron-hole asymmetric behaviour, and their dependence on the induced displacement field are opposite between even and odd filling factor states. These results strongly suggest that the QH states with broken valley and spin symmetries for individual layer become hybridized via interlayer tunnelling, and the hierarchy of the QH states is sensitive to both magnetic field and displacement field due to charge imbalance between layers.
RESUMEN
We report the observation of coherent lattice vibrations in mono- and few-layer WSe2 in the time domain, which were obtained by performing time-resolved transmission measurements. Upon the excitation of ultrashort pulses with the energy resonant to that of A excitons, coherent oscillations of the A1g optical phonon and longitudinal acoustic phonon at the M point of the Brillouin zone (LA(M)) were impulsively generated in monolayer WSe2. In multilayer WSe2 flakes, the interlayer breathing mode (B1) is found to be sensitive to the number of layers, demonstrating its usefulness in characterizing layered transition metal dichalcogenide materials. On the basis of temperature-dependent measurements, we find that the A1g optical phonon mode decays into two acoustic phonons through the anharmonic decay process.
RESUMEN
Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.
RESUMEN
We determined the electromechanical properties of a suspended graphene layer by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements, as well as computational simulations of the graphene-membrane mechanics and morphology. A graphene membrane was continuously deformed by controlling the competing interactions with a STM probe tip and the electric field from a back-gate electrode. The probe tip-induced deformation created a localized strain field in the graphene lattice. STS measurements on the deformed suspended graphene display an electronic spectrum completely different from that of graphene supported by a substrate. The spectrum indicates the formation of a spatially confined quantum dot, in agreement with recent predictions of confinement by strain-induced pseudomagnetic fields.