Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 100(24): 10521-10529, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27470143

RESUMEN

Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.


Asunto(s)
Antineoplásicos/metabolismo , Cetuximab/metabolismo , Receptores ErbB/antagonistas & inhibidores , Escherichia coli/metabolismo , Fragmentos Fab de Inmunoglobulinas/metabolismo , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Antineoplásicos/química , Línea Celular Tumoral , Cetuximab/química , Cetuximab/genética , Cristalografía por Rayos X , Escherichia coli/genética , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Espectrometría de Masas , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
2.
J Mol Biol ; 427(24): 3850-61, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26453802

RESUMEN

The activation process of the redox-regulated chaperone heat shock protein 33 (Hsp33) is constituted by the oxidation-induced unfolding of the C-terminal zinc-binding domain and concomitant oligomerization of the N-terminal core domain. Herein, the semi-empirical solution structure of Escherichia coli Hsp33 in the reduced, inactive form was generated through conformational space annealing calculations, utilizing minimalistic NMR data and multiple homology restraints. The various conformations of oxidized Hsp33 and some mutant forms were also investigated in solution. Interestingly, a specific region concentrated around the interdomain linker stretch and its interacting counterparts, the N-terminal ß-strand 1 and α-helix 1, hardly showed up as signals in the NMR measurements. The NMR spectra of an Hsp33 derivative with a six-residue deletion in the disordered N-terminus implied a plausible conformational exchange associated with the identified region, and the corresponding exchange rate appeared slower than that of the wild type. Subsequent mutations that destroyed the structure of the ß1 or α1 elements resulted in the formation of a reduced but active monomer, without the unfolding of the zinc-binding domain. Collectively, structural insights into the inactive and active conformations, including wild-type and mutant proteins, suggest that the dynamic interactions of the N-terminal segments with their contacting counterpart, the interdomain linker stretch, in the reduced, inactive state are the structural determinants regulating the activation process of the post-translationally regulated chaperone, Hsp33.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli , Proteínas de Choque Térmico/química , Secuencia de Aminoácidos , Dominio Catalítico , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA