Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Skin Res Technol ; 29(6): e13354, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37357658

RESUMEN

BACKGROUND: Wrinkles represent a characteristic symptom of skin aging. In recent years, various studies have focused on their prevention and/or cure. However, clinical tests are still the only method available to directly detect and evaluate the anti-wrinkle efficacy of various substances. Moreover, no in vitro strategy for such anti-aging skin analysis has been reported. Therefore, in this study, we aimed to develop a novel technology to overcome these limitations. MATERIALS AND METHODS: Full-thickness (FT) skin wrinkle mimics with various widths and depths were fabricated using a collagen stamping method. These were analyzed and compared using 2D and 3D Swept Source-Optical Coherence Tomography (SS-OCT) imaging technologies. RESULTS: SS-OCT demonstrated superficial and cross-sectional images of the wrinkle mimics, and the size of the wrinkles was validated using image analysis. Retinoic acid treatment significantly decreased both the depth and width of wrinkles formed in the FT skin wrinkle mimics. CONCLUSIONS: Using 3D tissue engineering and SS-OCT imaging technologies, we developed a novel in vitro technique that can directly detect skin wrinkles. This significantly efficient method could lead to an alternative strategy for animal experiments and preclinical anti-aging research on the skin.


Asunto(s)
Envejecimiento de la Piel , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Piel/diagnóstico por imagen , Imagenología Tridimensional/métodos
2.
Sensors (Basel) ; 22(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35632370

RESUMEN

Despite all the expectations for photoacoustic endoscopy (PAE), there are still several technical issues that must be resolved before the technique can be successfully translated into clinics. Among these, electromagnetic interference (EMI) noise, in addition to the limited signal-to-noise ratio (SNR), have hindered the rapid development of related technologies. Unlike endoscopic ultrasound, in which the SNR can be increased by simply applying a higher pulsing voltage, there is a fundamental limitation in leveraging the SNR of PAE signals because they are mostly determined by the optical pulse energy applied, which must be within the safety limits. Moreover, a typical PAE hardware situation requires a wide separation between the ultrasonic sensor and the amplifier, meaning that it is not easy to build an ideal PAE system that would be unaffected by EMI noise. With the intention of expediting the progress of related research, in this study, we investigated the feasibility of deep-learning-based EMI noise removal involved in PAE image processing. In particular, we selected four fully convolutional neural network architectures, U-Net, Segnet, FCN-16s, and FCN-8s, and observed that a modified U-Net architecture outperformed the other architectures in the EMI noise removal. Classical filter methods were also compared to confirm the superiority of the deep-learning-based approach. Still, it was by the U-Net architecture that we were able to successfully produce a denoised 3D vasculature map that could even depict the mesh-like capillary networks distributed in the wall of a rat colorectum. As the development of a low-cost laser diode or LED-based photoacoustic tomography (PAT) system is now emerging as one of the important topics in PAT, we expect that the presented AI strategy for the removal of EMI noise could be broadly applicable to many areas of PAT, in which the ability to apply a hardware-based prevention method is limited and thus EMI noise appears more prominently due to poor SNR.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Animales , Fenómenos Electromagnéticos , Endoscopía , Procesamiento de Imagen Asistido por Computador/métodos , Ratas
3.
Anal Chem ; 92(13): 8715-8721, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32449357

RESUMEN

Mass spectrometry imaging (MSI) based on matrix-assisted laser desorption/ionization (MALDI) provides information on the identification and spatial distribution of biomolecules. Quantitative analysis, however, has been challenging largely due to heterogeneity in both the size of the matrix crystals and the extraction area. In this work, we present a compartmentalized elastomeric stamp for quantitative MALDI-MSI of adsorbed peptides. Filling the compartments with matrix solution and stamping onto a planar substrate extract and concentrate analytes adsorbed in each compartment into a single analyte-matrix cocrystal over the entire stamped area. Walls between compartments help preserve spatial information on the adsorbates. The mass intensity of the cocrystals directly correlates with the surface coverage of analytes, which enables not only quantitative analysis but estimation of an equilibrium constant for the adsorption. We demonstrate via MALDI-MSI relative quantitation of peptides adsorbed along a microchannel with varying surface coverages.


Asunto(s)
Péptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adsorción , Fluoresceína-5-Isotiocianato/química , Dispositivos Laboratorio en un Chip , Microscopía Fluorescente
4.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366052

RESUMEN

The outer epidermal skin is a primary barrier that protects the body from extrinsic factors, such as ultraviolet (UV) radiation, chemicals and pollutants. The complete epithelialization of a wound by keratinocytes is essential for restoring the barrier function of the skin. However, age-related alterations predispose the elderly to impaired wound healing. Therefore, wound-healing efficacy could be also considered as a potent function of an anti-aging reagent. Here, we examine the epidermal wound-healing efficacy of the fourth-generation retinoid, seletinoid G, using HaCaT keratinocytes and skin tissues. We found that seletinoid G promoted the proliferation and migration of keratinocytes in scratch assays and time-lapse imaging. It also increased the gene expression levels of several keratinocyte proliferation-regulating factors. In human skin equivalents, seletinoid G accelerated epidermal wound closure, as assessed using optical coherence tomography (OCT) imaging. Moreover, second harmonic generation (SHG) imaging revealed that seletinoid G recovered the reduced dermal collagen deposition seen in ultraviolet B (UVB)-irradiated human skin equivalents. Taken together, these results indicate that seletinoid G protects the skin barrier by accelerating wound healing in the epidermis and by repairing collagen deficiency in the dermis. Thus, seletinoid G could be a potent anti-aging agent for protecting the skin barrier.


Asunto(s)
Dioxolanos/farmacología , Piranos/farmacología , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Dioxolanos/síntesis química , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/efectos de la radiación , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Piranos/síntesis química , Piel/efectos de los fármacos , Piel/metabolismo , Tomografía de Coherencia Óptica , Rayos Ultravioleta , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/efectos de la radiación
5.
Opt Express ; 26(5): 5423-5440, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529745

RESUMEN

Label-free imaging of rapidly moving, sub-diffraction sized structures has important applications in both biology and material science, as it removes the limitations associated with fluorescence tagging. However, unlabeled nanoscale particles in suspension are difficult to image due to their transparency and fast Brownian motion. Here we describe a novel interferometric imaging technique referred to as Magnified Image Spatial Spectrum (MISS) microscopy, which overcomes these challenges. The MISS microscope provides quantitative phase information and enables dynamic light scattering investigations with an overall optical path length sensitivity of 0.95 nm at 833 frames per second acquisition rate. Using spatiotemporal filtering, we find that the sensitivity can be further pushed down to 10-3-10-2 nm. We demonstrate the instrument's capability through colloidal nanoparticle sizing down to 20 nm diameter and measurements of live neuron membrane dynamics. MISS microscopy is implemented as an upgrade module to an existing microscope, which converts it into a powerful light scattering instrument. Thus, we anticipate that MISS will be adopted broadly for both material and life sciences applications.

6.
Appl Opt ; 56(9): D115-D119, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28375378

RESUMEN

A wide-field optical coherence tomography (OCT) probe was developed that adapts a diagonal-scanning scheme for three-dimensional (3D) in vivo imaging of the human tympanic membrane. The probe consists of a relay lens to enhance the lateral scanning range up to 7 mm. Motion artifacts that occur with the use of handheld probes were found to be decreased owing to the diagonal-scanning pattern, which crosses the center of the sample to facilitate entire 3D scans. 3D images could be constructed from a small number of two-dimensional OCT images acquired using the diagonal-scanning technique. To demonstrate the usefulness and performance of the developed system with the handheld probe, in vivo tympanic membranes of humans and animals were imaged in real time.

7.
Opt Lett ; 40(19): 4420-3, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26421546

RESUMEN

The imaging capability of optical coherence microscopy (OCM) has great potential to be used in neuroscience research because it is able to visualize anatomic features of brain tissue without labeling or external contrast agents. However, the field of view of OCM is still narrow, which dilutes the strength of OCM and limits its application. In this study, we present fully automated wide-field OCM for mosaic imaging of sliced mouse brains. A total of 308 segmented OCM images were acquired, stitched, and reconstructed as an en-face brain image after intensive imaging processing. The overall imaging area was 11.2×7.0 mm (horizontal×vertical), and the corresponding pixel resolution was 1.2×1.2 µm. OCM images were compared to traditional histology stained with Nissl and Luxol fast blue (LFB). In particular, the orientation of the fibers was analyzed and quantified in wide-field OCM.


Asunto(s)
Encéfalo/citología , Tomografía de Coherencia Óptica/métodos , Animales , Procesamiento de Imagen Asistido por Computador , Ratones
8.
Proc Natl Acad Sci U S A ; 109(24): 9529-34, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22645342

RESUMEN

Otitis media (OM), a middle-ear infection, is the most common childhood illness treated by pediatricians. If inadequately treated, OM can result in long-term chronic problems persisting into adulthood. Children with chronic OM or recurrent OM often have conductive hearing loss and communication difficulties and require surgical treatment. Tympanostomy tube insertion, the placement of a small drainage tube in the tympanic membrane (TM), is the most common surgical procedure performed in children under general anesthesia. Recent clinical studies have shown evidence of a direct correspondence between chronic OM and the presence of a bacterial biofilm within the middle ear. Biofilms are typically very thin and cannot be recognized using a regular otoscope. Here we report the use of optical coherent ranging techniques to noninvasively assess the middle ear to detect and quantify biofilm microstructure. This study involves adults with chronic OM, which is generally accepted as a biofilm-related disease. Based on more than 18,537 optical ranging scans and 742 images from 13 clinically infected patients and 7 normal controls using clinical findings as the gold standard, all middle ears with chronic OM showed evidence of biofilms, and all normal ears did not. Information on the presence of a biofilm, along with its structure and response to antibiotic treatment, will not only provide a better fundamental understanding of biofilm formation, growth, and eradication in the middle ear, but also may provide much-needed quantifiable data to enable early detection and quantitative longitudinal treatment monitoring of middle-ear biofilms responsible for chronic OM.


Asunto(s)
Biopelículas , Oído Medio/metabolismo , Humanos , Tomografía de Coherencia Óptica
9.
J Korean Med Sci ; 30(3): 328-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25729258

RESUMEN

We report the application of optical coherence tomography (OCT) to the diagnosis and evaluation of otitis media (OM). Whereas conventional diagnostic modalities for OM, including standard and pneumatic otoscopy, are limited to visualizing the surface of the tympanic membrane (TM), OCT effectively reveals the depth-resolved microstructure below the TM with very high spatial resolution, with the potential advantage of its use for diagnosing different types of OM. We examined the use of 840-nm spectral domain-OCT (SD-OCT) clinically, using normal ears and ears with the adhesive and effusion types of OM. Specific features were identified in two-dimensional OCT images of abnormal TMs, compared to images of healthy TMs. Analysis of the A-scan (axial depth scan) identified unique patterns of constituents within the effusions. The OCT images could not only be used to construct a database for the diagnosis and classification of OM but OCT might also represent an upgrade over current otoscopy techniques.


Asunto(s)
Otitis Media/diagnóstico , Tomografía de Coherencia Óptica/métodos , Membrana Timpánica/fisiología , Adulto , Conducto Auditivo Externo/anatomía & histología , Trompa Auditiva/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Otitis Media/clasificación , Tomografía de Coherencia Óptica/instrumentación
10.
Opt Express ; 22(8): 8985-95, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24787787

RESUMEN

We developed an augmented-reality system that combines optical coherence tomography (OCT) with a surgical microscope. By sharing the common optical path in the microscope and OCT, we could simultaneously acquire OCT and microscope views. The system was tested to identify the middle-ear and inner-ear microstructures of a mouse. Considering the probability of clinical application including otorhinolaryngology, diseases such as middle-ear effusion were visualized using in vivo mouse and OCT images simultaneously acquired through the eyepiece of the surgical microscope during surgical manipulation using the proposed system. This system is expected to realize a new practical area of OCT application.


Asunto(s)
Diagnóstico por Imagen , Enfermedades del Oído/diagnóstico , Oído Interno/patología , Oído Medio/patología , Microscopía/instrumentación , Procedimientos Quirúrgicos Otológicos , Tomografía de Coherencia Óptica/instrumentación , Animales , Modelos Animales de Enfermedad , Enfermedades del Oído/cirugía , Oído Interno/cirugía , Oído Medio/cirugía , Periodo Intraoperatorio , Ratones
11.
Sensors (Basel) ; 14(2): 2171-81, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24473286

RESUMEN

Development of a dual-display handheld optical coherence tomography (OCT) system for retina and optic-nerve-head diagnosis beyond the volunteer motion constraints is reported. The developed system is portable and easily movable, containing the compact portable OCT system that includes the handheld probe and computer. Eye posterior chambers were diagnosed using the handheld probe, and the probe could be fixed to the bench-top cradle depending on the volunteers' physical condition. The images obtained using this handheld probe were displayed in real time on the computer monitor and on a small secondary built-in monitor; the displayed images were saved using the handheld probe's built-in button. Large-scale signal-processing procedures such as k-domain linearization, fast Fourier transform (FFT), and log-scaling signal processing can be rapidly applied using graphics-processing-unit (GPU) accelerated processing rather than central-processing-unit (CPU) processing. The Labview-based system resolution is 1,024 × 512 pixels, and the frame rate is 56 frames/s, useful for real-time display. The 3D images of the posterior chambers including the retina, optic-nerve head, blood vessels, and optic nerve were composed using real-time displayed images with 500 × 500 × 500 pixel resolution. A handheld and bench-top hybrid mode with a dual-display handheld OCT was developed to overcome the drawbacks of the conventional method.

12.
Biomed Opt Express ; 15(6): 3807-3816, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867770

RESUMEN

The convergence of staining-free optical imaging and digital staining technologies has become a central focus in digital pathology, presenting significant advantages in streamlining specimen preparation and expediting the rapid acquisition of histopathological information. Despite the inherent merits of optical coherence microscopy (OCM) as a staining-free technique, its widespread application in observing histopathological slides has been constrained. This study introduces a novel approach by combining wide-field OCM with digital staining technology for the imaging of histopathological slides. Through the optimization of the histology slide production process satisfying the ground growth for digital staining as well as pronounced contrast for OCM imaging, successful imaging of various mouse tissues was achieved. Comparative analyses with conventional staining-based bright field images were executed to evaluate the proposed methodology's efficacy. Moreover, the study investigates the generalization of digital staining color appearance to ensure consistent histopathology, considering tissue-specific and thickness-dependent variations.

13.
ACS Nano ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087614

RESUMEN

Octopuses are notable creatures that can dynamically adhere to a variety of substrates owing to the efficient pressure control within their suction cups. An octopus' suckers are sealed at the rim and function by reducing the pressure inside the cavity, thereby creating a pressure difference between the ambient environment and the inner cavity. Inspired by this mechanism, we developed a plasmonic smart adhesive patch (Plasmonic AdPatch) with switchable adhesion in response to both temperature changes and near-infrared (NIR) light. The AdPatch incorporates an elastic, nanohole-patterned elastomer that mimics the structure of octopus suckers. Additionally, a monolayer of gold nanostars (GNSs) is coated on the patch, facilitating a NIR light-responsive photothermal effect. A musclelike, thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel functions as a volumetric actuator to regulate cavity pressure. When exposed to heat or light, the PNIPAM hydrogel shrinks, enabling the AdPatch to achieve strong suction adhesion (134 kPa at 45 °C, 71 kPa at 85 mW cm-2). Owing to its capability to achieve light-triggered remote adhesion without the need for external pressure, the Plasmonic AdPatch can be employed to transfer ultrathin films and biosensors to fragile organs without causing damage.

14.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257033

RESUMEN

The integration of nanoparticles (NPs) into molecular self-assemblies has been extensively studied with the aim of building well-defined, ordered structures which exhibit advanced properties and performances. This study demonstrates a novel strategy for the preparation of a spike-like self-assembly designed to enhance UV blocking. Poly(2-hydroxyethyl aspartamide) (PHEA) substituted with octadecyl chains and menthyl anthranilate (C18-M-PHEA) was successfully synthesized by varying the number of grafted groups to control their morphology and UV absorption. The in situ incorporation of polymerized rod-like TiO2 within the C18-M-PHEA self-aggregates generated spike-like self-assemblies (TiO2@C18-M-PHEA) with a chestnut burr structure in aqueous solution. The results showed that the spike-like self-assemblies integrated with TiO2 NPs exhibited a nine-fold increase in UV protection by simultaneous UV absorption and scattering compared with the pure TiO2 NPs formed via a bulk mixing process. This work provides a novel method for UV protection using self-assembling poly(amino acid)s derivatives integrated with functional nanoparticles to tune their morphology and organization.

15.
J Biophotonics ; 17(3): e202300496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358045

RESUMEN

Quantitative phase imaging (QPI) has a significant advantage in histopathology as it helps in differentiating biological tissue structures and cells without the need for staining. To make this capability more accessible, it is crucial to develop compact and portable systems. In this study, we introduce a portable diffraction phase microscopy (DPM) system that allows the acquisition of phase map images from various organs in mice using a low-NA objective lens. Our findings indicate that the cell and tissue structures observed in portable DPM images are similar to those seen in conventional histology microscope images. We confirmed that the developed system's performance is comparable to the benchtop DPM system. Additionally, we investigate the potential utility of digital histopathology by applying deep learning technology to create virtual staining of DPM images.


Asunto(s)
Técnicas Histológicas , Microscopía , Animales , Ratones , Microscopía/métodos
16.
Gels ; 10(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38247771

RESUMEN

Multi-layered hydrogels consisting of bi- or tri-layers with different swelling ratios are designed to soft hydrogel actuators by self-folding. The successful use of multi-layered hydrogels in this application greatly relies on the precise design and fabrication of the curvature of self-folding. In general, however, the self-folding often results in an undesired mismatch with the expecting value. To address this issue, this study introduces an interfacial layer formed between each layered hydrogel, and this layer is evaluated to enhance the design and fabrication precision. By considering the interfacial layer, which forms through diffusion, as an additional layer in the multi-layered hydrogel, the degree of mismatch in the self-folding is significantly reduced. Experimental results show that as the thickness of the interfacial layer increases, the multi-layered hydrogel exhibits a 3.5-fold increase in its radius of curvature during the self-folding. In addition, the diffusion layer is crucial for creating robust systems by preventing the separation of layers in the muti-layered hydrogel during actuation, thereby ensuring the integrity of the system in operation. This new strategy for designing multi-layered hydrogels including an interfacial layer would greatly serve to fabricate precise and robust soft hydrogel actuators.

17.
Biomed Opt Express ; 14(5): 2068-2079, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206137

RESUMEN

Quantitative phase imaging (QPI) has emerged as a new digital histopathologic tool as it provides structural information of conventional slide without staining process. It is also capable of imaging biological tissue sections with sub-nanometer sensitivity and classifying them using light scattering properties. Here we extend its capability further by using optical scattering properties as imaging contrast in a wide-field QPI. In our first step towards validation, QPI images of 10 major organs of a wild-type mouse have been obtained followed by H&E-stained images of the corresponding tissue sections. Furthermore, we utilized deep learning model based on generative adversarial network (GAN) architecture for virtual staining of phase delay images to a H&E-equivalent brightfield (BF) image analogues. Using the structural similarity index, we demonstrate similarities between virtually stained and H&E histology images. Whereas the scattering-based maps look rather similar to QPI phase maps in the kidney, the brain images show significant improvement over QPI with clear demarcation of features across all regions. Since our technology provides not only structural information but also unique optical property maps, it could potentially become a fast and contrast-enriched histopathology technique.

18.
Opt Lett ; 37(6): 1100-2, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22446238

RESUMEN

We study the major factors causing degradation in the lateral resolution of gradient-index-lens-based catheters used for high-resolution optical coherence tomography. Chromatic aberration and astigmatism were taken into account in the propagation of broadband single-mode Gaussian beams through the catheter geometry. It was found that, while chromatic aberration did not preclude achieving high resolution, astigmatism posed a major technical difficulty, because its correction requires a very sensitive adjustment of parameters, especially for catheters with long working distances.


Asunto(s)
Catéteres , Endoscopía/instrumentación , Fenómenos Ópticos , Tomografía de Coherencia Óptica/instrumentación , Diseño de Equipo
19.
Cancers (Basel) ; 14(14)2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35884460

RESUMEN

Cervical cancer can be prevented and treated better if it is diagnosed early. Colposcopy, a way of clinically looking at the cervix region, is an efficient method for cervical cancer screening and its early detection. The cervix region segmentation significantly affects the performance of computer-aided diagnostics using a colposcopy, particularly cervical intraepithelial neoplasia (CIN) classification. However, there are few studies of cervix segmentation in colposcopy, and no studies of fully unsupervised cervix region detection without image pre- and post-processing. In this study, we propose a deep learning-based unsupervised method to identify cervix regions without pre- and post-processing. A new loss function and a novel scheduling scheme for the baseline W-Net are proposed for fully unsupervised cervix region segmentation in colposcopy. The experimental results showed that the proposed method achieved the best performance in the cervix segmentation with a Dice coefficient of 0.71 with less computational cost. The proposed method produced cervix segmentation masks with more reduction in outliers and can be applied before CIN detection or other diagnoses to improve diagnostic performance. Our results demonstrate that the proposed method not only assists medical specialists in diagnosis in practical situations but also shows the potential of an unsupervised segmentation approach in colposcopy.

20.
Toxicol Res ; 38(4): 503-510, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36277365

RESUMEN

Histopathological examination is important for the diagnosis of various diseases. Conventional histopathology provides a two-dimensional view of the tissues, and requires the tissue to be extracted, fixed, and processed using histotechnology techniques. However, there is an increasing need for three-dimensional (3D) images of structures in biomedical research. The objective of this study was to develop reliable, objective tools for visualizing and quantifying metastatic tumors in mouse lung using micro-computed tomography (micro-CT), optical coherence tomography (OCT), and field emission-scanning electron microscopy (FE-SEM). Melanoma cells were intravenously injected into the tail vein of 8-week-old C57BL/6 mice. The mice were euthanized at 2 or 4 weeks after injection. Lungs were fixed and examined by micro-CT, OCT, FE-SEM, and histopathological observation. Micro-CT clearly distinguished between tumor and normal cells in surface and deep lesions, thereby allowing 3D quantification of the tumor volume. OCT showed a clear difference between the tumor and surrounding normal tissues. FE-SEM clearly showed round tumor cells, mainly located in the alveolar wall and growing inside the alveoli. Therefore, whole-tumor 3D imaging successfully visualized the metastatic tumor and quantified its volume. This promising approach will allow for fast and label-free 3D phenotyping of diverse tissue structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA