Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(4): 595-607, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36084042

RESUMEN

The purpose of this paper is to identify likely pathogenic non-coding variants in inherited retinal dystrophy (IRD) genes, using genome sequencing (GS). Patients with IRD were recruited to the study and underwent comprehensive ophthalmological evaluation and GS. The results of GS were investigated through virtual gene panel analysis, and plausible pathogenic variants and clinical phenotype evaluated by the multidisciplinary team (MDT) discussion. For unsolved patients in whom a specific gene was suspected to harbor a missed pathogenic variant, targeted re-analysis of non-coding regions was performed on GS data. Candidate variants were functionally tested by messenger RNA analysis, minigene or luciferase reporter assays. Previously unreported, likely pathogenic, non-coding variants in 7 genes (PRPF31, NDP, IFT140, CRB1, USH2A, BBS10 and GUCY2D), were identified in 11 patients. These were shown to lead to mis-splicing (PRPF31, IFT140, CRB1 and USH2A) or altered transcription levels (BBS10 and GUCY2D). MDT-led, phenotype-driven, non-coding variant re-analysis of GS is effective in identifying the missing causative alleles.


Asunto(s)
Distrofias Retinianas , Humanos , Mutación , Linaje , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Secuenciación Completa del Genoma , Grupo de Atención al Paciente , Análisis Mutacional de ADN/métodos , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
2.
Mov Disord ; 39(1): 203-209, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037516

RESUMEN

BACKGROUND: ATXN2 is the causative gene of spinocerebellar ataxia type 2 (SCA2) and has been implicated in glaucoma pathogenesis. Therefore, studying ocular changes in SCA2 could uncover clinically relevant changes. OBJECTIVE: The aim was to investigate optic disc and retinal architecture in SCA2. METHODS: We evaluated 14 patients with SCA2 and 26 controls who underwent intraocular pressure measurement, fundoscopy, and macular and peripapillary spectral domain optical coherence tomography (SD-OCT). We compared SD-OCT measurements in SCA2 and controls, and the frequency of glaucomatous changes among SCA2, controls, and 76 patients with other SCAs (types 1, 3, 6, and 7). RESULTS: The macula, peripapillary retinal nerve fiber and inner plexiform layers were thinner in SCA2 than in controls. Increased cup-to-disc ratio was more frequent in SCA2 than in controls and other SCAs. CONCLUSIONS: Ocular changes are part of SCA2 phenotype. Future studies should further investigate retinal and optic nerve architecture in this disorder.


Asunto(s)
Mácula Lútea , Disco Óptico , Humanos , Disco Óptico/patología , Células Ganglionares de la Retina/patología , Retina/diagnóstico por imagen , Retina/patología , Mácula Lútea/patología , Tomografía de Coherencia Óptica/métodos
3.
Mov Disord ; 37(4): 758-766, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936137

RESUMEN

BACKGROUND: Neurodegeneration affects the brain and peripheral nervous system in spinocerebellar ataxia type 3 (SCA3). As the retina is also involved, studying the retinal architecture in a cohort of patients could reveal clinically relevant biomarkers. OBJECTIVE: The aim is to investigate retinal architecture in SCA3 to identify potential biomarkers. METHODS: We evaluated 38 patients with SCA3 and 25 healthy age-matched controls, who underwent visual acuity assessment, intraocular pressure measurement, and fundoscopy and macular and peripapillary spectral domain optical coherence tomography (SD-OCT). We measured the peripapillary retinal nerve fiber layer (pRNFL) thickness in each quadrant of the temporal-superior-nasal-inferior-temporal chart and the macular layer thicknesses in each sector of the inner circle of the Early Treatment Diabetic Retinopathy Study (IC-ETDRS) grid. Linear regression analysis was employed to test the associations between retinal parameters and age, disease duration, CAG repeats, and SARA (Scale of the Assessment and Rating of Ataxia) and ICARS (International Cooperative Ataxia Rating Scale) scores in SCA3. RESULTS: In all sectors, except for the temporal quadrant, pRNFL was significantly thinner in SCA3 patients than in controls. Average total macular, ganglion cell layer (GCL), and inner plexiform layer (IPL) thicknesses were significantly decreased in SCA3 patients in comparison to controls. The average total macular thickness and the average thicknesses of RNFL, GCL, and IPL negatively correlated with ICARS scores, whereas average GCL and IPL thicknesses negatively correlated with SARA scores. CONCLUSIONS: The retinal ganglion cells, their dendrites, and axons are selectively affected in SCA3 patients. The RNFL, GCL, and IPL thicknesses in SD-OCT correlate with the clinical phenotype and represent potential biomarkers for future clinical trials and natural history studies. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Biomarcadores , Humanos , Enfermedad de Machado-Joseph/diagnóstico por imagen , Fibras Nerviosas , Retina/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tomografía de Coherencia Óptica/métodos
4.
Medicina (Kaunas) ; 57(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652663

RESUMEN

Leber hereditary optic neuropathy (LHON) is one of the most common inherited mitochondrial optic neuropathies, caused by mitochondrial DNA (mtDNA) mutations. Three most common mutations, namely m.11778G>A, m.14484T>G and m.3460G>A, account for the majority of LHON cases. These mutations lead to mitochondrial respiratory chain complex I damage. Typically, LHON presents at the 15-35 years of age with male predominance. LHON is associated with severe, subacute, painless bilateral vision loss and account for one of the most common causes of legal blindness in young individuals. Spontaneous visual acuity recovery is rare and has been reported in patients harbouring m.14484T>C mutation. Up to date LHON treatment is limited. Idebenone has been approved by European Medicines Agency (EMA) to treat LHON. However better understanding of disease mechanisms and ongoing treatment trials are promising and brings hope for patients. In this article we report on a patient diagnosed with LHON harbouring rare m.11253T>C mutation in MT-ND4 gene, who experienced spontaneous visual recovery. In addition, we summarise clinical presentation, diagnostic features, and treatment.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , ADN Mitocondrial/genética , Humanos , Masculino , Mitocondrias , Mutación , Atrofia Óptica Hereditaria de Leber/diagnóstico , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , Mutación Puntual
5.
Ophthalmology ; 127(10): 1384-1394, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32423767

RESUMEN

PURPOSE: In a large cohort of molecularly characterized inherited retinal disease (IRD) families, we investigated proportions with disease attributable to causative variants in each gene. DESIGN: Retrospective study of electronic patient records. PARTICIPANTS: Patients and relatives managed in the Genetics Service of Moorfields Eye Hospital in whom a molecular diagnosis had been identified. METHODS: Genetic screening used a combination of single-gene testing, gene panel testing, whole exome sequencing, and more recently, whole genome sequencing. For this study, genes listed in the Retinal Information Network online resource (https://sph.uth.edu/retnet/) were included. Transcript length was extracted for each gene (Ensembl, release 94). MAIN OUTCOME MEASURES: We calculated proportions of families with IRD attributable to variants in each gene in the entire cohort, a cohort younger than 18 years, and a current cohort (at least 1 patient encounter between January 1, 2017, and August 2, 2019). Additionally, we explored correlation between numbers of families and gene transcript length. RESULTS: We identified 3195 families with a molecular diagnosis (variants in 135 genes), including 4236 affected individuals. The pediatric cohort comprised 452 individuals from 411 families (66 genes). The current cohort comprised 2614 families (131 genes; 3130 affected individuals). The 20 most frequently implicated genes overall (with prevalence rates per families) were as follows: ABCA4 (20.8%), USH2A (9.1%), RPGR (5.1%), PRPH2 (4.6%), BEST1 (3.9%), RS1 (3.5%), RP1 (3.3%), RHO (3.3%), CHM (2.7%), CRB1 (2.1%), PRPF31 (1.8%), MY07A (1.7%), OPA1 (1.6%), CNGB3 (1.4%), RPE65 (1.2%), EYS (1.2%), GUCY2D (1.2%), PROM1 (1.2%), CNGA3 (1.1%), and RDH12 (1.1%). These accounted for 71.8% of all molecularly diagnosed families. Spearman coefficients for correlation between numbers of families and transcript length were 0.20 (P = 0.025) overall and 0.27 (P = 0.017), -0.17 (P = 0.46), and 0.71 (P = 0.047) for genes in which variants exclusively cause recessive, dominant, or X-linked disease, respectively. CONCLUSIONS: Our findings help to quantify the burden of IRD attributable to each gene. More than 70% of families showed pathogenic variants in 1 of 20 genes. Transcript length (relevant to gene delivery strategies) correlated significantly with numbers of affected families (but not for dominant disease).


Asunto(s)
ADN/genética , Proteínas del Ojo/genética , Mutación , Retina/patología , Enfermedades de la Retina/genética , Análisis Mutacional de ADN , Proteínas del Ojo/metabolismo , Femenino , Pruebas Genéticas , Humanos , Masculino , Linaje , Enfermedades de la Retina/congénito , Enfermedades de la Retina/diagnóstico , Estudios Retrospectivos , Reino Unido
6.
Ann Neurol ; 86(3): 368-383, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31298765

RESUMEN

OBJECTIVE: Autosomal dominant optic atrophy (ADOA) starts in early childhood with loss of visual acuity and color vision deficits. OPA1 mutations are responsible for the majority of cases, but in a portion of patients with a clinical diagnosis of ADOA, the cause remains unknown. This study aimed to identify novel ADOA-associated genes and explore their causality. METHODS: Linkage analysis and sequencing were performed in multigeneration families and unrelated patients to identify disease-causing variants. Functional consequences were investigated in silico and confirmed experimentally using the zebrafish model. RESULTS: We defined a new ADOA locus on 7q33-q35 and identified 3 different missense variants in SSBP1 (NM_001256510.1; c.113G>A [p.(Arg38Gln)], c.320G>A [p.(Arg107Gln)] and c.422G>A [p.(Ser141Asn)]) in affected individuals from 2 families and 2 singletons with ADOA and variable retinal degeneration. The mutated arginine residues are part of a basic patch that is essential for single-strand DNA binding. The loss of a positive charge at these positions is very likely to lower the affinity of SSBP1 for single-strand DNA. Antisense-mediated knockdown of endogenous ssbp1 messenger RNA (mRNA) in zebrafish resulted in compromised differentiation of retinal ganglion cells. A similar effect was achieved when mutated mRNAs were administered. These findings point toward an essential role of ssbp1 in retinal development and the dominant-negative nature of the identified human variants, which is consistent with the segregation pattern observed in 2 multigeneration families studied. INTERPRETATION: SSBP1 is an essential protein for mitochondrial DNA replication and maintenance. Our data have established pathogenic variants in SSBP1 as a cause of ADOA and variable retinal degeneration. ANN NEUROL 2019;86:368-383.


Asunto(s)
Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad/genética , Proteínas Mitocondriales/genética , Atrofia Óptica Autosómica Dominante/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Ligamiento Genético/genética , Humanos , Masculino , Ratones , Mutación Missense , Atrofia Óptica Autosómica Dominante/patología , Linaje , ARN Mensajero/genética , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Pez Cebra/genética
7.
Neuroophthalmology ; 44(6): 413-414, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408429

RESUMEN

Peripapillary hyperreflective ovoid mass-like structures (PHOMS) are a new retinal optical coherence tomography (OCT) finding. The Optic Disc Drusen Studies Consortium had made recommendations to distinguish PHOMS from true optic disc drusen (ODD) in 2018. While publications on PHOMS have increased since then, the accuracy of the definition of PHOMS and reliability of detection is unknown. In this multi-rater study, we demonstrate that the 2018 definition of PHOMS resulted in a poor multi-rater kappa of 0.356. We performed a Delphi consensus process to develop a consistent and refined definition of PHOMS with clear principles around the nature of PHOMS and how they differ from normal anatomy. Fifty explanatory teaching slides, provided as supplementary material, allowed our expert group of raters to achieve a good level of agreement (kappa 0.701, 50 OCT scans, 21 raters). We recommend adopting the refined definition for PHOMS.

8.
Curr Opin Neurol ; 32(1): 99-104, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30516647

RESUMEN

PURPOSE OF REVIEW: Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial DNA (mtDNA) disorder in the population and it carries a poor visual prognosis. In this article, we review the development of treatment strategies for LHON, the evidence base and the areas of unmet clinical need. RECENT FINDINGS: There is accumulating evidence that increasing mitochondrial biogenesis could be an effective strategy for protecting retinal ganglion cells in LHON. A number of clinical trials are currently investigating the efficacy of viral-based gene therapy for patients harbouring the m.11778G>A mtDNA mutation. For female LHON carriers of childbearing age, mitochondrial replacement therapy is being offered to prevent the maternal transmission of pathogenic mtDNA mutations. SUMMARY: Although disease-modifying treatment options remain limited, a better understanding of the underlying disease mechanisms in LHON is paving the way for complementary neuroprotective and gene therapeutic strategies for this mitochondrial optic nerve disorder.


Asunto(s)
ADN Mitocondrial/genética , Mutación , Atrofia Óptica Hereditaria de Leber/terapia , Terapia Genética , Humanos , Atrofia Óptica Hereditaria de Leber/genética
12.
Curr Opin Ophthalmol ; 28(5): 403-409, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28650878

RESUMEN

PURPOSE OF REVIEW: Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial DNA (mtDNA) genetic disorder in the population. We address the clinical evolution of the disease, the secondary etiological factors that could contribute to visual loss, and the challenging task of developing effective treatments. RECENT FINDINGS: LHON is characterized by a preclinical phase that reflects retinal ganglion cell (RGC) dysfunction before rapid visual deterioration ensues. Children can present atypically with slowly progressive visual loss or an insidious/subclinical onset that frequently results in considerable diagnostic delays. The LHON mtDNA mutation is not sufficient on its own to precipitate RGC loss and the current body of evidence supports a role for smoking and estrogen levels influencing disease conversion. Clinical trials are currently investigating the efficacy of adeno-associated viral vectors-based gene therapy approaches for patients carrying the m.11778G>A mutation. Mitochondrial replacement therapy is being developed as a reproductive option to prevent the maternal transmission of pathogenic mtDNA mutations. SUMMARY: LHON is phenotypically more heterogeneous than previously considered and a complex interplay of genetic, environmental and hormonal factors modulates the risk of a LHON carrier losing vision. Advances in disease modelling, drug screening and genetic engineering offer promising avenues for therapeutic breakthroughs in LHON.


Asunto(s)
ADN Mitocondrial/genética , Mutación , Atrofia Óptica Hereditaria de Leber , Células Ganglionares de la Retina/patología , Salud Global , Humanos , Atrofia Óptica Hereditaria de Leber/epidemiología , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/patología , Prevalencia
15.
Eye (Lond) ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862643

RESUMEN

This article describes the main visual electrodiagnostic tests relevant to neuro-ophthalmology practice, including the visual evoked potential (VEP), and the full-field, pattern and multifocal electroretinograms (ffERG; PERG; mfERG). The principles of electrophysiological interpretation are illustrated with reference to acquired and inherited optic neuropathies, and retinal disorders that may masquerade as optic neuropathy, including ffERG and PERG findings in cone and macular dystrophies, paraneoplastic and vascular retinopathies. Complementary VEP and PERG recordings are illustrated in demyelinating, ischaemic, nutritional (B12), and toxic (mercury, cobalt, and ethambutol-related) optic neuropathies and inherited disorders affecting mitochondrial function such as Leber hereditary optic neuropathy and dominant optic atrophy. The value of comprehensive electrophysiological phenotyping in syndromic diseases is highlighted in cases of SSBP1-related disease and ROSAH (Retinal dystrophy, Optic nerve oedema, Splenomegaly, Anhidrosis and Headache). The review highlights the value of different electrophysiological techniques, for the purposes of differential diagnosis and objective functional phenotyping.

16.
Ophthalmol Retina ; 8(7): 699-709, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38219857

RESUMEN

PURPOSE: Inherited retinal disease (IRD) is a leading cause of blindness. Recent advances in gene-directed therapies highlight the importance of understanding the genetic basis of these disorders. This study details the molecular spectrum in a large United Kingdom (UK) IRD patient cohort. DESIGN: Retrospective study of electronic patient records. PARTICIPANTS: Patients with IRD who attended the Genetics Service at Moorfields Eye Hospital between 2003 and July 2020, in whom a molecular diagnosis was identified. METHODS: Genetic testing was undertaken via a combination of single-gene testing, gene panel testing, whole exome sequencing, and more recently, whole genome sequencing. Likely disease-causing variants were identified from entries within the genetics module of the hospital electronic patient record (OpenEyes Electronic Medical Record). Analysis was restricted to only genes listed in the Genomics England PanelApp R32 Retinal Disorders panel (version 3.24), which includes 412 genes associated with IRD. Manual curation ensured consistent variant annotation and included only plausible disease-associated variants. MAIN OUTCOME MEASURES: Detailed analysis was performed for variants in the 5 most frequent genes (ABCA4, USH2A, RPGR, PRPH2, and BEST1), as well as for the most common variants encountered in the IRD study cohort. RESULTS: We identified 4415 individuals from 3953 families with molecularly diagnosed IRD (variants in 166 genes). Of the families, 42.7% had variants in 1 of the 5 most common IRD genes. Complex disease alleles contributed to disease in 16.9% of affected families with ABCA4-associated retinopathy. USH2A exon 13 variants were identified in 43% of affected individuals with USH2A-associated IRD. Of the RPGR variants, 71% were clustered in the ORF15 region. PRPH2 and BEST1 variants were associated with a range of dominant and recessive IRD phenotypes. Of the 20 most prevalent variants identified, 5 were not in the most common genes; these included founder variants in CNGB3, BBS1, TIMP3, EFEMP1, and RP1. CONCLUSIONS: We describe the most common pathogenic IRD alleles in a large single-center multiethnic UK cohort and the burden of disease, in terms of families affected, attributable to these variants. Our findings will inform IRD diagnoses in future patients and help delineate the cohort of patients eligible for gene-directed therapies under development. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Asunto(s)
Pruebas Genéticas , Enfermedades de la Retina , Humanos , Reino Unido/epidemiología , Estudios Retrospectivos , Masculino , Femenino , Enfermedades de la Retina/genética , Enfermedades de la Retina/diagnóstico , Pruebas Genéticas/métodos , Mutación , Variación Genética , Adulto , Secuenciación del Exoma/métodos , Persona de Mediana Edad , Linaje , ADN/genética , Predisposición Genética a la Enfermedad
17.
Cell Rep Med ; 5(3): 101437, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38428428

RESUMEN

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to rapid and severe bilateral vision loss. Idebenone has been shown to be effective in stabilizing and restoring vision in patients treated within 1 year of onset of vision loss. The open-label, international, multicenter, natural history-controlled LEROS study (ClinicalTrials.gov NCT02774005) assesses the efficacy and safety of idebenone treatment (900 mg/day) in patients with LHON up to 5 years after symptom onset (N = 199) and over a treatment period of 24 months, compared to an external natural history control cohort (N = 372), matched by time since symptom onset. LEROS meets its primary endpoint and confirms the long-term efficacy of idebenone in the subacute/dynamic and chronic phases; the treatment effect varies depending on disease phase and the causative mtDNA mutation. The findings of the LEROS study will help guide the clinical management of patients with LHON.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/diagnóstico , Antioxidantes/uso terapéutico , Ubiquinona/uso terapéutico , Ubiquinona/genética , Mutación
18.
Eye (Lond) ; 37(12): 2416-2425, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37185957

RESUMEN

Historically, distinct mitochondrial syndromes were recognised clinically by their ocular features. Due to their predilection for metabolically active tissue, mitochondrial diseases frequently involve the eye, resulting in a range of ophthalmic manifestations including progressive external ophthalmoplegia, retinopathy and optic neuropathy, as well as deficiencies of the retrochiasmal visual pathway. With the wider availability of genetic testing in clinical practice, it is now recognised that genotype-phenotype correlations in mitochondrial diseases can be imprecise: many classic syndromes can be associated with multiple genes and genetic variants, and the same genetic variant can have multiple clinical presentations, including subclinical ophthalmic manifestations in individuals who are otherwise asymptomatic. Previously considered rare diseases with no effective treatments, considerable progress has been made in our understanding of mitochondrial diseases with new therapies emerging, in particular, gene therapy for inherited optic neuropathies.


Asunto(s)
Enfermedades Mitocondriales , Enfermedades del Nervio Óptico , Enfermedades de la Retina , Humanos , Síndrome , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades del Nervio Óptico/complicaciones , Enfermedades de la Retina/complicaciones
19.
Am J Ophthalmol ; 249: 99-107, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36543315

RESUMEN

PURPOSE: To investigate the clinical and molecular genetic features of childhood-onset Leber hereditary optic neuropathy (LHON) to gain a better understanding of the factors influencing the visual outcome in this atypical form of the disease. DESIGN: Retrospective cohort study. METHODS: We retrospectively included 2 cohorts of patients with LHON with onset of visual loss before the age of 12 years from Italy and the United Kingdom. Ophthalmologic evaluation, including best-corrected visual acuity, orthoptic evaluation, slit-lamp biomicroscopy, visual field testing, and optical coherence tomography, was considered. Patients were classified based on both the age of onset and the pattern of visual loss. RESULTS: A total of 68 patients were stratified based on the age of onset of visual loss: group 1 (<3 years): 14 patients (20.6%); group 2 (≥3 to <9 years): 27 patients (39.7%); and group 3 (≥9 to ≤12 years): 27 patients (39.7%). Patients in group 2 achieved a better visual outcome than those in group 3. Patients in groups 1 and 2 had better mean deviation on visual field testing than those in group 3. The mean ganglion cell layer thickness on optical coherence tomography in group 2 was higher than those in groups 1 and 3. Patients were also categorized based on the pattern of visual loss as follows: Subacute Bilateral: 54 patients (66.7%); Insidious Bilateral: 14 patients (17.3%); Unilateral: 9 patients (11.1%); and Subclinical Bilateral: 4 patients (4.9%). CONCLUSIONS: Children who lose vision from LHON before the age of 9 years have a better visual prognosis than those who become affected in later years, likely representing a "form frustre" of the disease.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Niño , Humanos , Preescolar , Atrofia Óptica Hereditaria de Leber/diagnóstico , Atrofia Óptica Hereditaria de Leber/epidemiología , Atrofia Óptica Hereditaria de Leber/genética , Pronóstico , Estudios Retrospectivos , Pruebas del Campo Visual , Trastornos de la Visión/genética , Ceguera , Tomografía de Coherencia Óptica/métodos
20.
Ophthalmol Ther ; 12(1): 401-429, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36449262

RESUMEN

INTRODUCTION: Lenadogene nolparvovec is a promising novel gene therapy for patients with Leber hereditary optic neuropathy (LHON) carrying the m.11778G>A ND4 mutation (MT-ND4). A previous pooled analysis of phase 3 studies showed an improvement in visual acuity of patients injected with lenadogene nolparvovec compared to natural history. Here, we report updated results by incorporating data from the latest phase 3 trial REFLECT in the pool, increasing the number of treated patients from 76 to 174. METHODS: The visual acuity of 174 MT-ND4-carrying patients with LHON injected in one or both eyes with lenadogene nolparvovec from four pooled phase 3 studies (REVERSE, RESCUE and their long-term extension trial RESTORE; and REFLECT trial) was compared to the spontaneous evolution of an external control group of 208 matched patients from 11 natural history studies. RESULTS: Treated patients showed a clinically relevant and sustained improvement in their visual acuity when compared to natural history. Mean improvement versus natural history was - 0.30 logMAR (+ 15 ETDRS letters equivalent) at last observation (P < 0.01) with a maximal follow-up of 3.9 years after injection. Most treated eyes were on-chart as compared to less than half of natural history eyes at 48 months after vision loss (89.6% versus 48.1%; P < 0.01) and at last observation (76.1% versus 44.4%; P < 0.01). When we adjusted for covariates of interest (gender, age of onset, ethnicity, and duration of follow-up), the estimated mean gain was - 0.43 logMAR (+ 21.5 ETDRS letters equivalent) versus natural history at last observation (P < 0.0001). Treatment effect was consistent across all phase 3 clinical trials. Analyses from REFLECT suggest a larger treatment effect in patients receiving bilateral injection compared to unilateral injection. CONCLUSION: The efficacy of lenadogene nolparvovec in improving visual acuity in MT-ND4 LHON was confirmed in a large cohort of patients, compared to the spontaneous natural history decline. Bilateral injection of gene therapy may offer added benefits over unilateral injection. TRIAL REGISTRATION NUMBERS: NCT02652780 (REVERSE); NCT02652767 (RESCUE); NCT03406104 (RESTORE); NCT03293524 (REFLECT); NCT03295071 (REALITY).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA