Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Circ Res ; 132(4): 400-414, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36715019

RESUMEN

BACKGROUND: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.


Asunto(s)
Miocitos Cardíacos , Hidrolasas Diéster Fosfóricas , Ratones , Animales , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Catecolaminas/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Antiarrítmicos/metabolismo , GMP Cíclico/metabolismo , Péptido Natriurético Tipo-C/farmacología
2.
Cytotherapy ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39001769

RESUMEN

BACKGROUND AIMS: Ex vivo production of red blood cells (RBCs) represents a promising alternative for transfusion medicine. Several strategies have been described to generate erythroid cell lines from different sources, including embryonic, induced pluripotent, and hematopoietic stem cells. All these approaches have in common that they require elaborate differentiation cultures whereas the yield of enucleated RBCs is inefficient. METHODS: We generated a human immortalized adult erythroid progenitor cell line derived from bone marrow CD71-positive erythroid progenitor cells (immortalized bone marrow erythroid progenitor adult, or imBMEP-A) by an inducible expression system, to shorten differentiation culture necessary for terminal erythroid differentiation. It is the first erythroid cell line that is generated from direct reticulocyte progenitors and demonstrates robust hemoglobin production in the immortalized state. RESULTS: Morphologic analysis of the immortalized cells showed that the preferred cell type of the imBMEP-A line corresponds to hemoglobin-producing basophilic erythroblasts. In addition, we were able to generate a stable cell line from a single cell clone with the triple knockout of RhAG, RhDCE and KELL. After removal of doxycycline, part of the cells differentiated into normoblasts and reticulocytes within 5-7 days. CONCLUSIONS: Our results demonstrate that the imBMEP-A cell line can serve as a stable and straightforward modifiable platform for RBC engineering in the future.

3.
Horm Metab Res ; 56(4): 318-323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37890507

RESUMEN

COVID-19 disease, caused by the severe acute respiratory syndrome virus 2 (SARS-CoV-2), induces a broad spectrum of clinical symptoms ranging from asymptomatic cases to fatal outcomes. About 10-35% of all COVID-19 patients, even those with mild COVID-19 symptoms, continue to show symptoms, i. e., fatigue, shortness of breath, cough, and cognitive dysfunction, after initial recovery. Previously, we and others identified red blood cell precursors as a direct target of SARS-CoV-2 and suggested that SARS-CoV-2 induces dysregulation in hemoglobin- and iron-metabolism contributing to the severe systemic course of COVID-19. Here, we put particular emphasis on differences in parameters of clinical blood gas analysis and hematological parameters of more than 20 healthy and Long-COVID patients, respectively. Long-COVID patients showed impaired oxygen binding to hemoglobin with concomitant increase in carbon monoxide binding. Hand in hand with decreased plasma iron concentration and transferrin saturation, mean corpuscular hemoglobin was elevated in Long-COVID patients compared to healthy donors suggesting a potential compensatory mechanism. Although blood pH was within the physiological range in both groups, base excess- and bicarbonate values were significantly lower in Long-COVID patients. Furthermore, Long-COVID patients displayed reduced lymphocyte levels. The clinical relevance of these findings, e. g., as a cause of chronic immunodeficiency, remains to be investigated in future studies. In conclusion, our data suggest impaired erythrocyte functionality in Long-COVID patients, leading to diminished oxygen supply. This in turn could be an explanation for the CFS, dyspnea and anemia. Further investigations are necessary to identify the underlying pathomechanisms.


Asunto(s)
COVID-19 , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Eritrocitos , Hierro , Hemoglobinas , Oxígeno
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731908

RESUMEN

In atrial fibrillation (AF), multifactorial pathologic atrial alterations are manifested by structural and electrophysiological changes known as atrial remodeling. AF frequently develops in the context of underlying cardiac abnormalities. A critical mechanistic role played by atrial stretch is played by abnormal substrates in a number of conditions that predispose to AF, including obesity, heart failure, hypertension, and sleep apnea. The significant role of overweight and obesity in the development of AF is known; however, the differential effect of overweight, obesity, cardiovascular comorbidities, lifestyle, and other modifiable risk factors on the occurrence and recurrence of AF remains to be determined. Reverse remodeling of the atrial substrate and subsequent reduction in the AF burden by conversion into a typical sinus rhythm has been associated with weight loss through lifestyle changes or surgery. This makes it an essential pillar in the management of AF in obese patients. According to recently published research, microRNAs (miRs) may function as post-transcriptional regulators of genes involved in atrial remodeling, potentially contributing to the pathophysiology of AF. The focus of this review is on their modulation by both weight loss and catheter ablation interventions to counteract atrial remodeling in AF. Our analysis outlines the experimental and clinical evidence supporting the synergistic effects of weight loss and catheter ablation (CA) in reversing atrial electrical and structural remodeling in AF onset and in recurrent post-ablation AF by attenuating pro-thrombotic, pro-inflammatory, pro-fibrotic, arrhythmogenic, and male-sex-associated hypertrophic remodeling pathways. Furthermore, we discuss the promising role of miRs with prognostic potential as predictive biomarkers in guiding approaches to AF recurrence prevention.


Asunto(s)
Fibrilación Atrial , Biomarcadores , Ablación por Catéter , MicroARNs , Pérdida de Peso , Fibrilación Atrial/metabolismo , Fibrilación Atrial/genética , Fibrilación Atrial/etiología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Ablación por Catéter/métodos , Recurrencia , Remodelación Atrial , Animales , Obesidad/metabolismo , Obesidad/complicaciones
5.
Circ Res ; 129(8): 804-820, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34433292
6.
Circ Res ; 127(8): 1036-1055, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32762493

RESUMEN

RATIONALE: Postoperative atrial fibrillation (POAF) is a common and troublesome complication of cardiac surgery. POAF is generally believed to occur when postoperative triggers act on a preexisting vulnerable substrate, but the underlying cellular and molecular mechanisms are largely unknown. OBJECTIVE: To identify cellular POAF mechanisms in right atrial samples from patients without a history of atrial fibrillation undergoing open-heart surgery. METHODS AND RESULTS: Multicellular action potentials, membrane ion-currents (perforated patch-clamp), or simultaneous membrane-current (ruptured patch-clamp) and [Ca2+]i-recordings in atrial cardiomyocytes, along with protein-expression levels in tissue homogenates or cardiomyocytes, were assessed in 265 atrial samples from patients without or with POAF. No indices of electrical, profibrotic, or connexin remodeling were noted in POAF, but Ca2+-transient amplitude was smaller, although spontaneous sarcoplasmic reticulum (SR) Ca2+-release events and L-type Ca2+-current alternans occurred more frequently. CaMKII (Ca2+/calmodulin-dependent protein kinase-II) protein-expression, CaMKII-dependent phosphorylation of the cardiac RyR2 (ryanodine-receptor channel type-2), and RyR2 single-channel open-probability were significantly increased in POAF. SR Ca2+-content was unchanged in POAF despite greater SR Ca2+-leak, with a trend towards increased SR Ca2+-ATPase activity. Patients with POAF also showed stronger expression of activated components of the NLRP3 (NACHT, LRR, and PYD domains-containing protein-3)-inflammasome system in atrial whole-tissue homogenates and cardiomyocytes. Acute application of interleukin-1ß caused NLRP3-signaling activation and CaMKII-dependent RyR2/phospholamban hyperphosphorylation in an immortalized mouse atrial cardiomyocyte cell-line (HL-1-cardiomyocytes) and enhanced spontaneous SR Ca2+-release events in both POAF cardiomyocytes and HL-1-cardiomyocytes. Computational modeling showed that RyR2 dysfunction and increased SR Ca2+-uptake are sufficient to reproduce the Ca2+-handling phenotype and indicated an increased risk of proarrhythmic delayed afterdepolarizations in POAF subjects in response to interleukin-1ß. CONCLUSIONS: Preexisting Ca2+-handling abnormalities and activation of NLRP3-inflammasome/CaMKII signaling are evident in atrial cardiomyocytes from patients who subsequently develop POAF. These molecular substrates sensitize cardiomyocytes to spontaneous Ca2+-releases and arrhythmogenic afterdepolarizations, particularly upon exposure to inflammatory mediators. Our data reveal a potential cellular and molecular substrate for this important clinical problem.


Asunto(s)
Fibrilación Atrial/etiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Atrios Cardíacos/enzimología , Frecuencia Cardíaca , Inflamasomas/metabolismo , Miocitos Cardíacos/enzimología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potenciales de Acción , Anciano , Animales , Fibrilación Atrial/enzimología , Fibrilación Atrial/fisiopatología , Señalización del Calcio , Estudios de Casos y Controles , Línea Celular , Femenino , Atrios Cardíacos/fisiopatología , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
7.
J Mol Cell Cardiol ; 158: 49-62, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33974928

RESUMEN

AIMS: Atrial Fibrillation (AF) is an arrhythmia of increasing prevalence in the aging populations of developed countries. One of the important indicators of AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to changing mechanical forces, are not fully elucidated. Here, we characterise stretch-activated ion channels (SAC) in human atrial fibroblasts and changes in SAC- presence and activity associated with AF. METHODS AND RESULTS: Using primary cultures of human atrial fibroblasts, isolated from patients in sinus rhythm or sustained AF, we combine electrophysiological, molecular and pharmacological tools to identify SAC. Two electrophysiological SAC- signatures were detected, indicative of cation-nonselective and potassium-selective channels. Using siRNA-mediated knockdown, we identified the cation-nonselective SAC as Piezo1. Biophysical properties of the potassium-selective channel, its sensitivity to calcium, paxilline or iberiotoxin (blockers), and NS11021 (activator), indicated presence of calcium-dependent 'big potassium channels' (BKCa). In cells from AF patients, Piezo1 activity and mRNA expression levels were higher than in cells from sinus rhythm patients, while BKCa activity (but not expression) was downregulated. Both Piezo1-knockdown and removal of extracellular calcium from the patch pipette resulted in a significant reduction of BKCa current during stretch. No co-immunoprecipitation of Piezo1 and BKCa was detected. CONCLUSIONS: Human atrial fibroblasts contain at least two types of ion channels that are activated during stretch: Piezo1 and BKCa. While Piezo1 is directly stretch-activated, the increase in BKCa activity during mechanical stimulation appears to be mainly secondary to calcium influx via SAC such as Piezo1. During sustained AF, Piezo1 is increased, while BKCa activity is reduced, highlighting differential regulation of both channels. Our data support the presence and interplay of Piezo1 and BKCa in human atrial fibroblasts in the absence of physical links between the two channel proteins.


Asunto(s)
Arritmia Sinusal/metabolismo , Fibrilación Atrial/metabolismo , Remodelación Atrial/genética , Atrios Cardíacos/metabolismo , Canales Iónicos/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal/genética , Adulto , Anciano , Anciano de 80 o más Años , Arritmia Sinusal/patología , Arritmia Sinusal/cirugía , Fibrilación Atrial/patología , Fibrilación Atrial/cirugía , Remodelación Atrial/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Atrios Cardíacos/patología , Humanos , Indoles/farmacología , Canales Iónicos/genética , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/agonistas , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Tetrazoles/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología , Transfección
8.
Basic Res Cardiol ; 112(3): 29, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28389717

RESUMEN

Estrogen modulates adrenergic reactivity of macrovessels, resulting in weaker α-adrenergic vasoconstriction in females than males. However, the mechanisms governing this important sex-specific difference are not well understood. We hypothesized that vessels of females express more dilatory ß-adrenoceptors, which counteract constrictive effects of α-adrenoceptors. This hypothesis was tested using aortas of normotensive (WKY) and hypertensive rats (SHR), along with human mammary artery. Selective blockade of ß1 (CGP20712) or ß3 (SR59230A), but not ß2 (ICI118,551) adrenoceptors, greatly increased α-adrenergic constriction (norepinephrine) of aorta in female SHRs, but not in male SHRs at 12 weeks of age. Consistently, the selective ß1/ß2 (isoproterenol) and ß3-adrenergic (BRL37344) relaxation was stronger in female SHRs than in males. Removal of endothelium and use of L-NMMA abolished sex-difference in α-adrenergic constriction and ß-adrenergic relaxation. Immunostainings revealed endothelial localization of ß1- and ß3-adrenoceptors. mRNA levels of aortic ß1- and ß3-, but not ß2-adrenoceptors were markedly higher in female than in male SHRs. The sex-specific differences in α-adrenergic constriction and ß-adrenoceptor mRNA levels were age-dependent, predominantly present up to 29 weeks and disappeared at 36 weeks of age. The sex-specific difference was not strain-dependent and was similarly present in normotensive WKY rats. Human mammary artery of women showed a weaker α-adrenergic constriction than arteries of men. This sex-specific difference was prominent at 45-65 years and disappeared with aging. Our results convincingly demonstrate that female macrovessels express more dilatory ß1- and ß3-adrenoreceptors than male vessels with a predominant endothelial localization. This sex-specific difference is functionally relevant in young adults and is attenuated with aging.


Asunto(s)
Envejecimiento/metabolismo , Endotelio Vascular/metabolismo , Receptores Adrenérgicos beta/metabolismo , Caracteres Sexuales , Antagonistas Adrenérgicos beta/farmacología , Anciano , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Endogámicas SHR
9.
Basic Res Cardiol ; 112(4): 43, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28597249

RESUMEN

Protein phosphatase 1 (PP1) is a key regulator of important cardiac signaling pathways. Dysregulation of PP1 has been heavily implicated in cardiac dysfunctions. Accordingly, pharmacological targeting of PP1 activity is considered for therapeutic intervention in human cardiomyopathies. Recent evidence from animal models implicated previously unrecognized, isoform-specific activities of PP1 in the healthy and diseased heart. Therefore, this study examined the expression of the distinct PP1 isoforms PP1α, ß, and γ in human heart failure (HF) and atrial fibrillation (AF) and addressed the consequences of ß-adrenoceptor blocker (beta-blocker) therapy for HF patients with reduced ejection fraction on PP1 isoform expression. Using western blot analysis, we found greater abundance of PP1 isoforms α and γ but unaltered PP1ß levels in left ventricular myocardial tissues from HF patients as compared to non-failing controls. However, expression of all three PP1 isoforms was higher in atrial appendages from patients with AF compared to patients with sinus rhythm. Moreover, we found that in human failing ventricles, beta-blocker therapy was associated with lower PP1α abundance and activity, as indicated by higher phosphorylation of the PP1α-specific substrate eIF2α. Greater eIF2α phosphorylation is a known repressor of protein translation, and accordingly, we found lower levels of the endoplasmic reticulum (ER) stress marker Grp78 in the very same samples. We propose that isoform-specific targeting of PP1α activity may be a novel and innovative therapeutic strategy for the treatment of human cardiac diseases by reducing ER stress conditions.


Asunto(s)
Fibrilación Atrial/enzimología , Insuficiencia Cardíaca/enzimología , Miocardio/enzimología , Proteína Fosfatasa 1/metabolismo , Antagonistas Adrenérgicos beta/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Estudios de Casos y Controles , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Células HEK293 , Atrios Cardíacos/enzimología , Atrios Cardíacos/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/patología , Proteínas de Choque Térmico/metabolismo , Humanos , Isoenzimas , Masculino , Persona de Mediana Edad , Miocardio/patología , Fosforilación , Proteína Fosfatasa 1/genética , Volumen Sistólico , Especificidad por Sustrato , Transfección , Función Ventricular Izquierda
10.
Dermatologie (Heidelb) ; 75(3): 214-217, 2024 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-38240813

RESUMEN

BACKGROUND: Radiation-induced morphea is a fibro-inflammatory remodelling process of the subcutaneous connective tissue caused by ionising radiation, most commonly in the context of breast cancer treatment. The underlying pathomechanisms and putative risk factors are unknown. Therefore, misdiagnosis and inappropriate treatment pose a significant problem in the care of those patients. OBJECTIVES: The aim of the study was to provide an overview as well as guidance for the diagnosis and treatment of radiation-induced morphea based on current case reports and review articles. RESULTS AND CONCLUSIONS: Radiation-induced morphea is a rare condition that represents an interdisciplinary challenge for (gynaecological) oncology, radiotherapy and dermatology. Frequent misdiagnoses include infection (erysipelas), cancer recurrence or radiation dermatitis. Early histological diagnosis and the initiation of anti-inflammatory therapy using topical glucocorticoids or calcineurin inhibitors in combination with phototherapy and/or methotrexate are the most relevant success factors for an adequate clinical response.


Asunto(s)
Neoplasias de la Mama , Esclerodermia Localizada , Humanos , Femenino , Esclerodermia Localizada/diagnóstico , Recurrencia Local de Neoplasia/complicaciones , Neoplasias de la Mama/complicaciones , Metotrexato/efectos adversos , Fototerapia/efectos adversos
11.
J Immunother Cancer ; 12(2)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38417916

RESUMEN

BACKGROUND: The antitumor activity of natural killer (NK) cells can be enhanced by specific targeting with therapeutic antibodies that trigger antibody-dependent cell-mediated cytotoxicity (ADCC) or by genetic engineering to express chimeric antigen receptors (CARs). Despite antibody or CAR targeting, some tumors remain resistant towards NK cell attack. While the importance of ICAM-1/LFA-1 interaction for natural cytotoxicity of NK cells is known, its impact on ADCC induced by the ErbB2 (HER2)-specific antibody trastuzumab and ErbB2-CAR-mediated NK cell cytotoxicity against breast cancer cells has not been investigated. METHODS: Here we used NK-92 cells expressing high-affinity Fc receptor FcγRIIIa in combination with trastuzumab or ErbB2-CAR engineered NK-92 cells (NK-92/5.28.z) as well as primary human NK cells combined with trastuzumab or modified with the ErbB2-CAR and tested cytotoxicity against cancer cells varying in ICAM-1 expression or alternatively blocked LFA-1 on NK cells. Furthermore, we specifically stimulated Fc receptor, CAR and/or LFA-1 to study their crosstalk at the immunological synapse and their contribution to degranulation and intracellular signaling in antibody-targeted or CAR-targeted NK cells. RESULTS: Blockade of LFA-1 or absence of ICAM-1 significantly reduced cell killing and cytokine release during trastuzumab-mediated ADCC against ErbB2-positive breast cancer cells, but not so in CAR-targeted NK cells. Pretreatment with 5-aza-2'-deoxycytidine induced ICAM-1 upregulation and reversed NK cell resistance in ADCC. Trastuzumab alone did not sufficiently activate NK cells and required additional LFA-1 co-stimulation, while activation of the ErbB2-CAR in CAR-NK cells induced efficient degranulation independent of LFA-1. Total internal reflection fluorescence single molecule imaging revealed that CAR-NK cells formed an irregular immunological synapse with tumor cells that excluded ICAM-1, while trastuzumab formed typical peripheral supramolecular activation cluster (pSMAC) structures. Mechanistically, the absence of ICAM-1 did not affect cell-cell adhesion during ADCC, but rather resulted in decreased signaling via Pyk2 and ERK1/2, which was intrinsically provided by CAR-mediated targeting. Furthermore, while stimulation of the inhibitory NK cell checkpoint molecule NKG2A markedly reduced FcγRIIIa/LFA-1-mediated degranulation, retargeting by CAR was only marginally affected. CONCLUSIONS: Downregulation of ICAM-1 on breast cancer cells is a critical escape mechanism from trastuzumab-triggered ADCC. In contrast, CAR-NK cells are able to overcome cancer cell resistance caused by ICAM-1 reduction, highlighting the potential of CAR-NK cells in cancer immunotherapy.


Asunto(s)
Neoplasias de la Mama , Receptores Quiméricos de Antígenos , Humanos , Femenino , Molécula 1 de Adhesión Intercelular , Receptores Quiméricos de Antígenos/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Regulación hacia Abajo , Escape del Tumor , Línea Celular Tumoral , Células Asesinas Naturales , Trastuzumab/farmacología , Anticuerpos , Receptores Fc/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo
12.
Physiol Rep ; 11(17): e15809, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688424

RESUMEN

OBJECTIVES: Myocardial infarction (MI) initiates a complex reparative response during which damaged cardiac muscle is replaced by connective tissue. While the initial repair is essential for survival, excessive fibrosis post-MI is a primary contributor to progressive cardiac dysfunction, and ultimately heart failure. Currently, there are no approved drugs for the prevention or the reversal of cardiac fibrosis. Therefore, we tested the therapeutic potential of repurposed mesalazine as a post-MI therapy, as distinct antifibrotic effects have recently been demonstrated. METHODS: At 8 weeks of age, MI was induced in male C57BL/6J mice by LAD ligation. Mesalazine was administered orally at a dose of 100 µg/g body weight in drinking water. Fluid intake, weight development, and cardiac function were monitored for 28 days post intervention. Fibrosis parameters were assessed histologically and via qPCR. RESULTS: Compared to controls, mesalazine treatment offered no survival benefit. However, no adverse effects on heart and kidney function and weight development were observed, either. While total cardiac fibrosis remained largely unaffected by mesalazine treatment, we found a distinct reduction of perivascular fibrosis alongside reduced cardiac collagen expression. CONCLUSIONS: Our findings warrant further studies on mesalazine as a potential add-on therapy post-MI, as perivascular fibrosis development was successfully prevented.


Asunto(s)
Mesalamina , Infarto del Miocardio , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Mesalamina/farmacología , Mesalamina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Corazón , Miocardio
13.
Front Immunol ; 14: 1254821, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885894

RESUMEN

Natural killer (NK) cells are attractive effectors for adoptive immunotherapy of cancer. Results from first-in-human studies using chimeric antigen receptor (CAR)-engineered primary NK cells and NK-92 cells are encouraging in terms of efficacy and safety. In order to further improve treatment strategies and to test the efficacy of CAR-NK cells in a personalized manner, preclinical screening assays using patient-derived tumor samples are needed. Zebrafish (Danio rerio) embryos and larvae represent an attractive xenograft model to study growth and dissemination of patient-derived tumor cells because of their superb live cell imaging properties. Injection into the organism's circulation allows investigation of metastasis, cancer cell-to-immune cell-interactions and studies of the tumor cell response to anti-cancer drugs. Here, we established a zebrafish larval xenograft model to test the efficacy of CAR-NK cells against metastatic breast cancer in vivo by injecting metastatic breast cancer cells followed by CAR-NK cell injection into the Duct of Cuvier (DoC). We validated the functionality of the system with two different CAR-NK cell lines specific for PD-L1 and ErbB2 (PD-L1.CAR NK-92 and ErbB2.CAR NK-92 cells) against the PD-L1-expressing MDA-MB-231 and ErbB2-expressing MDA-MB-453 breast cancer cell lines. Injected cancer cells were viable and populated peripheral regions of the larvae, including the caudal hematopoietic tissue (CHT), simulating homing of cancer cells to blood forming sites. CAR-NK cells injected 2.5 hours later migrated to the CHT and rapidly eliminated individual cancer cells throughout the organism. Unmodified NK-92 also demonstrated minor in vivo cytotoxicity. Confocal live-cell imaging demonstrated intravascular migration and real-time interaction of CAR-NK cells with MDA-MB-231 cells, explaining the rapid and effective in vivo cytotoxicity. Thus, our data suggest that zebrafish larvae can be used for rapid and cost-effective in vivo assessment of CAR-NK cell potency and to predict patient response to therapy.


Asunto(s)
Neoplasias de la Mama , Receptores Quiméricos de Antígenos , Animales , Humanos , Femenino , Pez Cebra , Antígeno B7-H1/metabolismo , Xenoinjertos , Línea Celular Tumoral , Células Asesinas Naturales
15.
Heliyon ; 8(9): e10365, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36110234

RESUMEN

The combination of the human induced pluripotent stem cell (hiPSC) and organoid technology enables the generation of human 3D culture systems, providing the opportunity to model human tissue-like structures in vitro. This protocol offers the details to generate and characterize self-assembling 3D cardiac organoids in a controlled and efficient manner based on hiPSC-derived cardiomyocytes. Cardiac organoids can be used as 3D-based assay systems and offer a wide range of applications in pharmacological and toxicological research as well as an alternative to animal experiments.

16.
Front Immunol ; 13: 916701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784287

RESUMEN

Psoriasis is frequently associated with the metabolic syndrome and occurs more often in obese individuals. In order to understand innate immune mechanisms mediating this inflammatory pattern we investigated expression of the chemokine and lipid scavenger receptor CXCL16 in patients with psoriasis and associated comorbidities. CXCL16 expression was enhanced on all monocyte subsets in psoriatic patients compared with healthy controls and positively correlated with psoriasis activity and severity index, body mass index and the risk for cardiovascular disease indicated by PROCAM score. The intensity of CXCL16 expression on monocytes further correlated with their capability to phagocytose oxidized LDL indicating the possibility to transform into foam cells in atherosclerotic plaques. Patients with psoriasis and atherosclerosis or obesity displayed elevated numbers of innate lymphoid cells in blood with specific increase of the IFN-γ or IL-17 producing ILC1 and ILC3 subpopulations. The expression of the CXCL16 receptor, CXCR6, was increased in ILCs and co-expressed with CCR6 but not CCR7 indicating their migratory potential to psoriatic skin or adipose tissue that is characterized by strong CXCL16 and CCL20 expression. This hypothesis was supported by the finding that the percentage of CXCR6 expressing ILCs was alleviated in blood of psoriatic patients. Together these data link a strong expression of CXCL16 to metabolic syndrome in psoriasis and indicate a possible link to ILC activation and tissue distribution in obese psoriatic patients. These data contribute to the understanding of the complex interaction of innate immunity and metabolic state in psoriasis.


Asunto(s)
Síndrome Metabólico , Psoriasis , Quimiocina CXCL16/metabolismo , Humanos , Inmunidad Innata , Linfocitos , Síndrome Metabólico/metabolismo , Monocitos , Obesidad/metabolismo , Regulación hacia Arriba
17.
Nat Commun ; 13(1): 7648, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496449

RESUMEN

After myocardial infarction the innate immune response is pivotal in clearing of tissue debris as well as scar formation, but exaggerated cytokine and chemokine secretion with subsequent leukocyte infiltration also leads to further tissue damage. Here, we address the value of targeting a previously unknown a disintegrin and metalloprotease 10 (ADAM10)/CX3CL1 axis in the regulation of neutrophil recruitment early after MI. We show that myocardial ADAM10 is distinctly upregulated in myocardial biopsies from patients with ischemia-driven cardiomyopathy. Intriguingly, upon MI in mice, pharmacological ADAM10 inhibition as well as genetic cardiomycyte-specific ADAM10 deletion improves survival with markedly enhanced heart function and reduced scar size. Mechanistically, abolished ADAM10-mediated CX3CL1 ectodomain shedding leads to diminished IL-1ß-dependent inflammation, reduced neutrophil bone marrow egress as well as myocardial tissue infiltration. Thus, our data shows a conceptual insight into how acute MI induces chemotactic signaling via ectodomain shedding in cardiomyocytes.


Asunto(s)
Proteína ADAM10 , Infarto del Miocardio , Animales , Ratones , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Leucocitos , Proteínas de la Membrana/genética , Infarto del Miocardio/genética , Humanos
18.
Dtsch Med Wochenschr ; 146(8): 552-558, 2021 04.
Artículo en Alemán | MEDLINE | ID: mdl-33853173

RESUMEN

ATP-Citrate-Lyase is a key enzyme of cholesterol biosynthesis. Its liver-specific inhibition by the bempedoic acid opens new possibilities to effectively escalate a cholesterol-lowering therapy while avoiding muscle-related side effects. Herein, we present the properties of this new first-in-class pharmaceutical agent and discuss potential consequences for pharmacotherapy.


Asunto(s)
ATP Citrato (pro-S)-Liasa/antagonistas & inhibidores , Ácidos Dicarboxílicos , Ácidos Grasos , Hipolipemiantes , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo
19.
Naunyn Schmiedebergs Arch Pharmacol ; 394(11): 2233-2244, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34410453

RESUMEN

Skin fibrosis is a complex biological remodeling process occurring in disease like systemic sclerosis, morphea, or eosinophilic fasciitis. Since the knowledge about the underlying pathomechanisms is still incomplete, there is currently no therapy, which prevents or reverses skin fibrosis sufficiently. The present study investigates the role of polo-like kinase 2 (PLK2) and the pro-fibrotic cytokine osteopontin (OPN) in the pathogenesis of cutaneous fibrosis and demonstrates the antifibrotic effects of systemic mesalazine treatment in vivo. Isolated primary dermal fibroblasts of PLK2 wild-type (WT) and knockout (KO) mice were characterized in vitro. Skin thickness and histoarchitecture were studied in paraffin-embedded skin sections. The effects of mesalazine treatment were examined in isolated fibroblasts and PLK2 KO mice, which were fed 100 µg/g mesalazine for 6 months via the drinking water. Compared to WT, PLK2 KO fibroblasts displayed higher spontaneous myofibroblast differentiation, reduced proliferation rates, and overexpression of the fibrotic cytokine OPN. In vitro, 72 h of treatment with 10 mmol/L mesalazine induced phenotype conversion in PLK2 KO fibroblasts and attenuated OPN expression by inhibiting ERK1/2. In vivo, dermal myofibroblast differentiation, collagen accumulation, and skin thickening were prevented by mesalazine in PLK2 KO. Plasma creatinine levels indicated good tolerability of systemic long-term mesalazine treatment. The current study reveals a spontaneous fibrotic skin phenotype and ERK1/2-dependent OPN overexpression in PLK2 KO mice. We provide experimental evidence for the antifibrotic effectiveness of systemic mesalazine treatment to prevent fibrosis of the skin, suggesting further investigation in experimental and clinical settings.


Asunto(s)
Fibroblastos/efectos de los fármacos , Mesalamina/farmacología , Proteínas Serina-Treonina Quinasas/genética , Piel/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/toxicidad , Diferenciación Celular/efectos de los fármacos , Colágeno/metabolismo , Creatinina/sangre , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Fibrosis/prevención & control , Masculino , Mesalamina/administración & dosificación , Mesalamina/toxicidad , Ratones , Ratones Noqueados , Osteopontina/genética , Piel/patología
20.
Cells ; 10(3)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799608

RESUMEN

Pulmonary fibrosis is the chronic-progressive replacement of healthy lung tissue by extracellular matrix, leading to the destruction of the alveolar architecture and ultimately death. Due to limited pathophysiological knowledge, causal therapies are still missing and consequently the prognosis is poor. Thus, there is an urgent clinical need for models to derive effective therapies. Polo-like kinase 2 (PLK2) is an emerging regulator of fibroblast function and fibrosis. We found a significant downregulation of PLK2 in four different entities of human pulmonary fibrosis. Therefore, we characterized the pulmonary phenotype of PLK2 knockout (KO) mice. Isolated pulmonary PLK2 KO fibroblasts displayed a pronounced myofibroblast phenotype reflected by increased expression of αSMA, reduced proliferation rates and enhanced ERK1/2 and SMAD2/3 phosphorylation. In PLK2 KO, the expression of the fibrotic cytokines osteopontin and IL18 was elevated compared to controls. Histological analysis of PLK2 KO lungs revealed early stage remodeling in terms of alveolar wall thickening, increased alveolar collagen deposition and myofibroblast foci. Our results prompt further investigation of PLK2 function in pulmonary fibrosis and suggest that the PLK2 KO model displays a genetic predisposition towards pulmonary fibrosis, which could be leveraged in future research on this topic.


Asunto(s)
Colágeno/metabolismo , Fibroblastos/enzimología , Pulmón/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Fibrosis Pulmonar/enzimología , Adulto , Animales , Proliferación Celular , Células Cultivadas , Femenino , Fibroblastos/patología , Eliminación de Gen , Predisposición Genética a la Enfermedad , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Pulmón/patología , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Persona de Mediana Edad , Miofibroblastos/enzimología , Miofibroblastos/patología , Osteopontina/genética , Osteopontina/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA