Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 197: 106975, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38032294

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) belong to a superfamily of cys-loop receptors characterized by the assembly of five subunits into a multi-protein channel complex. Ligand binding to nAChRs activates rapid allosteric transitions of the receptor leading to channel opening and ion flux in neuronal and non-neuronal cell. Thus, while ionotropic properties of nAChRs are well recognized, less is known about ligand-mediated intracellular metabotropic signaling responses. Studies in neural and non-neural cells confirm ionotropic and metabotropic channel responses following ligand binding. In this review we summarize evidence on the existence of ionotropic and metabotropic signaling responses by homopentameric α7 nAChRs in various cell types. We explore how coordinated calcium entry through the ion channel and calcium release from nearby stores gives rise to signaling important for the modulation of cytoskeletal motility and cell growth. Amino acid residues for intracellular protein binding within the α7 nAChR support engagement in metabotropic responses including signaling through heterotrimeric G proteins in neural and immune cells. Understanding the dual properties of ionotropic and metabotropic nAChR responses is essential in advancing drug development for the treatment of various human disease.


Asunto(s)
Receptores Nicotínicos , Humanos , Calcio , Ligandos , Transducción de Señal , Receptor Nicotínico de Acetilcolina alfa 7
2.
Pestic Biochem Physiol ; 194: 105473, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532312

RESUMEN

Neonicotinoids (neonics) are amongst the most commonly used class of pesticides globally. In the United States, imidacloprid (IMI) is extensively used for agriculture and in other common applications such as house-hold pest control. Regular exposure to IMI, and several of its known metabolites including IMI-olefin and desnitro-imidacloprid (DN-IMI), has been shown to be harmful to many organisms including mammals, birds, and fish. Studies show that neonics bind human nicotinicacetylcholine receptors (nAChRs) and cause cellular toxicity. In the dopaminergic Lund human mesencephalic (LUHMES) cell line, IMI and other neonics (10-100 µM) have been recently shown to activate intracellular calcium signaling through nAChRs. Thus, we examined proteomic responses of LUHMES cells to a 48-h treatment with 50 µM IMI, IMI-olefin, or DN-IMI. Our findings show differential effects of these neonics on cellular protein expression. Bioinformatic analysis of significantly altered proteins indicates an effect of IMI, IMI-olefin, and DN-IMI on protein synthesis and ribosomal function. These findings suggest a role for protein synthesis and transcriptional regulation in neonic-mediated dopaminergic neurotoxicity.


Asunto(s)
Insecticidas , Animales , Humanos , Insecticidas/toxicidad , Alquenos , Proteómica , Neonicotinoides/toxicidad , Neonicotinoides/metabolismo , Nitrocompuestos/toxicidad , Nitrocompuestos/metabolismo , Mamíferos/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373106

RESUMEN

T14 modulates calcium influx via the α-7 nicotinic acetylcholine receptor to regulate cell growth. Inappropriate triggering of this process has been implicated in Alzheimer's disease (AD) and cancer, whereas T14 blockade has proven therapeutic potential in in vitro, ex vivo and in vivo models of these pathologies. Mammalian target of rapamycin complex 1 (mTORC1) is critical for growth, however its hyperactivation is implicated in AD and cancer. T14 is a product of the longer 30mer-T30. Recent work shows that T30 drives neurite growth in the human SH-SY5Y cell line via the mTOR pathway. Here, we demonstrate that T30 induces an increase in mTORC1 in PC12 cells, and ex vivo rat brain slices containing substantia nigra, but not mTORC2. The increase in mTORC1 by T30 in PC12 cells is attenuated by its blocker, NBP14. Moreover, in post-mortem human midbrain, T14 levels correlate significantly with mTORC1. Silencing mTORC1 reverses the effects of T30 on PC12 cells measured via AChE release in undifferentiated PC12 cells, whilst silencing mTORC2 does not. This suggests that T14 acts selectively via mTORC1. T14 blockade offers a preferable alternative to currently available blockers of mTOR as it would enable selective blockade of mTORC1, thereby reducing side effects associated with generalised mTOR blockade.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Ratas , Animales , Humanos , Sirolimus/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Péptidos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Enfermedad de Alzheimer/patología , Mamíferos/metabolismo
4.
Mol Pharmacol ; 97(5): 351-353, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32238438

RESUMEN

COVID19 is a devastating global pandemic with epicenters in China, Italy, Spain, and now the United States. While the majority of infected cases appear mild, in some cases, individuals present serious cardiorespiratory complications with possible long-term lung damage. Infected individuals report a range of symptoms from headaches to shortness of breath to taste and smell loss. To that end, less is known about how the virus may impact different organ systems. The SARS-CoV2 virus, which is responsible for COVID19, is highly similar to SARS-CoV. Both viruses have evolved an ability to enter host cells through direct interaction with the angiotensin converting enzyme (ACE) 2 protein at the surface of many cells. Published findings indicate that SARS-CoV can enter the human nervous system with evidence from both postmortem brains and detection in cerebrospinal fluid of infected individuals. Here, we consider the ability of SARS-CoV2 to enter and infect the human nervous system based on the strong expression of the ACE2 target throughout the brain. Moreover, we predict that nicotine exposure through various kinds of smoking (cigarettes, electronic cigarettes, or vape) can increase the risk for COVID19 neuroinfection based on known functional interactions between the nicotinic receptor and ACE2. We advocate for higher surveillance and analysis of neurocomplications in infected cases. SIGNIFICANCE STATEMENT: The COVID19 epidemic has spurred a global public health crisis. While many of the cases requiring hospitalization and intensive medical care center on cardiorespiratory treatment, a growing number of cases present neurological symptoms. Viral entry into the brain now appears a strong possibility with deleterious consequences and an urgent need for addressing.


Asunto(s)
Betacoronavirus/patogenicidad , Encéfalo/virología , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Fumar/efectos adversos , COVID-19 , Humanos , Pandemias , Riesgo , SARS-CoV-2 , Fumadores
5.
Mol Pharmacol ; 93(6): 601-611, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29588343

RESUMEN

The pharmacological targeting of the α7 nicotinic acetylcholine receptor (α7) is a promising strategy in the development of new drugs for neurologic diseases. Because α7 receptors regulate cellular calcium, we investigated how the prototypical type II-positive allosteric modulator PNU120596 affects α7-mediated calcium signaling. Live imaging experiments show that PNU120596 augments ryanodine receptor-driven calcium-induced calcium release (CICR), inositol-induced calcium release (IICR), and phospholipase C activation by the α7 receptor. Both influx of calcium through the α7 nicotinic acetylcholine receptor (nAChR) channel as well as the binding of intracellular G proteins were involved in the effect of PNU120596 on intracellular calcium. This is evidenced by the findings that chelation of extracellular calcium, expression of α7D44A or α7345-348A mutant subunits, or blockade of calcium store release compromised the ability of PNU120596 to increase intracellular calcium transients generated by α7 ligand activation. Spatiotemporal stochastic modeling of calcium transient responses corroborates these results and indicates that α7 receptor activation enables calcium microdomains locally and to lesser extent in the distant cytosol. From the model, allosteric modulation of the receptor activates CICR locally via ryanodine receptors and augments IICR through enhanced calcium influx due to prolonged α7 nAChR opening. These findings provide a new mechanistic framework for understanding the effect of α7 receptor allosteric modulation on both local and global calcium dynamics.


Asunto(s)
Calcio/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Línea Celular Tumoral , Citoplasma/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Isoxazoles/farmacología , Células PC12 , Compuestos de Fenilurea/farmacología , Ratas
6.
J Biol Chem ; 290(33): 20060-70, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26088141

RESUMEN

α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345-348A) abolishes interaction with Gαq as well as Gßγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345-348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-ß activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Encéfalo/metabolismo , Ratones , Datos de Secuencia Molecular , Células PC12 , Ratas , Homología de Secuencia de Aminoácido , Receptor Nicotínico de Acetilcolina alfa 7/química
7.
J Neurochem ; 138(4): 532-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27167578

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) modulate the growth and structure of neurons throughout the nervous system. Ligand stimulation of the α7 nAChR has been shown to regulate the large heterotrimeric GTP-binding protein (G protein) signaling in various types of cells. Here, we demonstrate a role for α7 nAChR/G protein interaction in the activation of the small (monomeric) RhoA GTPase leading to cytoskeletal changes during neurite growth. Treatment of PC12 cells with the α7 nAChR agonist choline or PNU-282987 was associated with an increase in RhoA activity and an inhibition in neurite growth. Specifically, choline treatment was found to attenuate the velocity of microtubule growth at the growth cone and decrease the rate of actin polymerization throughout the cell. The effects of α7 nAChR activation were abolished by expression of a dominant negative α7 nAChR (α7345-348A ) deficient in G protein coupling. Proteomic analysis of immunoprecipitated α7 nAChR complexes from differentiating PC12 cells and synaptic fractions of the developing mouse hippocampus revealed the existence of Rho GTPase-regulating guanine nucleotide exchange factors within α7 nAChR interactomes. These findings underscore the role of α7 nAChR/G protein in cytoskeletal regulation during neurite growth. This image depicts the hypothesized interaction of the traditionally ionotropic α7 nicotinic acetylcholine receptor (α7 nAChR) and its ability to interact and signal through both large and small G proteins, leading to the regulation of cytoskeletal growth. Using differentiated PC12 cells, and the specific agonist choline, it was shown that α7 nAChR/G protein interactions mediate both short- and long-term neurite growth dynamics through increased RhoA activation. Activation of RhoA was shown to decrease actin polymerization, and lead to an overall decrease in neurite growth via regulation of the microtubule network. Cover Image for this issue: doi: 10.1111/jnc.13330.


Asunto(s)
Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Señalización del Calcio/fisiología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Activación Enzimática , Femenino , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Masculino , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Agonistas Nicotínicos/farmacología , Células PC12 , Ratas , Receptor Nicotínico de Acetilcolina alfa 7/efectos de los fármacos
8.
FASEB J ; 28(7): 2995-3006, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687992

RESUMEN

The α7 nicotinic receptor (α7) plays an important role in neuronal growth and structural plasticity in the developing brain. We have recently characterized a G-protein-signaling pathway regulated by α7 that directs the growth of neurites in developing neural cells. Now we show that choline activation of α7 promotes a rise in intracellular calcium from local ER stores via Gαq signaling, leading to IP3 receptor (IP3R) activation at the growth cone of differentiating PC12 cells. A mutant α7 significantly attenuated in calcium conductance (D44A; P<0.001) was found to be unable to promote IP3R signaling and calcium store release. In addition, calcium elevation via α7 correlates with a significant attenuation in the rate of microtubule invasion of the growth cone (P<0.001). This process was also attenuated in the D44A mutant and blocked by an inhibitor of the IP3R, suggesting that calcium flow through the α7 channel and activation of the Gαq pathway are necessary for growth. Taken together, the findings reveal an inhibitory mechanism of α7 on cytoskeletal growth via the intracellular calcium activity of the receptor channel and the Gαq signaling pathway at the growth cone.-Nordman, J. C., Kabbani, N. Microtubule dynamics at the growth cone are mediated by α7 nicotinic receptor activation of a Gαq and IP3 receptor pathway.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Conos de Crecimiento/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microtúbulos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Línea Celular Tumoral , Neuritas/metabolismo , Células PC12 , Ratas , Transducción de Señal/fisiología
9.
Bioessays ; 35(12): 1025-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24185813

RESUMEN

It was, until recently, accepted that the two classes of acetylcholine (ACh) receptors are distinct in an important sense: muscarinic ACh receptors signal via heterotrimeric GTP binding proteins (G proteins), whereas nicotinic ACh receptors (nAChRs) open to allow flux of Na+, Ca2+, and K+ ions into the cell after activation. Here we present evidence of direct coupling between G proteins and nAChRs in neurons. Based on proteomic, biophysical, and functional evidence, we hypothesize that binding to G proteins modulates the activity and signaling of nAChRs in cells. It is important to note that while this hypothesis is new for the nAChR, it is consistent with known interactions between G proteins and structurally related ligand-gated ion channels. Therefore, it underscores an evolutionarily conserved metabotropic mechanism of G protein signaling via nAChR channels.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Proteínas de Unión al GTP/genética , Humanos , Unión Proteica , Receptores Nicotínicos/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
10.
Mol Pharmacol ; 85(1): 50-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24107512

RESUMEN

Smoking is a common addiction and a leading cause of disease. Chronic nicotine exposure is known to activate nicotinic acetylcholine receptors (nAChRs) in immune cells. We demonstrate a novel role for α4 nAChRs in the effect of nicotine on T-cell proliferation and immunity. Using cell-based sorting and proteomic analysis we define an α4 nAChR expressing helper T-cell population (α4(+)CD3(+)CD4(+)) and show that this group of cells is responsive to sustained nicotine exposure. In the circulation, spleen, bone marrow, and thymus, we find that nicotine promotes an increase in CD3(+)CD4(+) cells via its activation of the α4 nAChR and regulation of G protein subunit o, G protein regulated-inducer of neurite outgrowth, and CDC42 signaling within T cells. In particular, nicotine is found to promote a helper T cell 2 adaptive immunologic response within T cells that is absent in α4(-/-) mice. We thus present a new mechanism of α4 nAChR signaling and immune regulation in T cells, possibly accounting for the effect of smoking on the immune system.


Asunto(s)
Receptores Nicotínicos/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Complejo CD3/metabolismo , Antígenos CD4/metabolismo , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nicotina/farmacología , Receptores Nicotínicos/genética , Transducción de Señal , Bazo/citología , Bazo/efectos de los fármacos , Bazo/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Timo/citología , Timo/efectos de los fármacos , Timo/inmunología , Proteína de Unión al GTP cdc42/metabolismo
11.
J Neurochem ; 129(4): 649-62, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24350810

RESUMEN

Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein-regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone. Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the growth cone. In addition, an α7/Gprin1 interaction appears intimately linked to a Gαo, growth-associated protein 43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain.


Asunto(s)
Acetilcolina/fisiología , Región CA3 Hipocampal/citología , Conos de Crecimiento/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/fisiología , Animales , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Bungarotoxinas/farmacología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/embriología , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Colina/farmacología , Femenino , Proteína GAP-43/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Conos de Crecimiento/ultraestructura , Péptidos y Proteínas de Señalización Intercelular , Masculino , Proteínas del Tejido Nervioso/metabolismo , Péptidos/farmacología , Toxina del Pertussis/farmacología , Mapeo de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Venenos de Avispas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/biosíntesis , Receptor Nicotínico de Acetilcolina alfa 7/genética , Proteína de Unión al GTP cdc42/fisiología
12.
J Cell Sci ; 125(Pt 22): 5502-13, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22956546

RESUMEN

The α7 acetylcholine nicotinic receptor (α7) is an important mediator of cholinergic transmission during brain development. Here we present an intracellular signaling mechanism for the α7 receptor. Proteomic analysis of immunoprecipitated α7 subunits reveals an interaction with a G protein pathway complex (GPC) comprising Gα(i/o), GAP-43 and G protein regulated inducer of neurite outgrowth 1 (Gprin1) in differentiating cells. Morphological studies indicate that α7 receptors regulate neurite length and complexity via a Gprin1-dependent mechanism that directs the expression of α7 to the cell surface. α7-GPC interactions were confirmed in embryonic cortical neurons and were found to modulate the growth of axons. Taken together, these findings reveal a novel intracellular pathway of signaling for α7 within neurons, and suggest a role for its interactions with the GPC in brain development.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Neuritas/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Bungarotoxinas/farmacología , Calmodulina/metabolismo , Diferenciación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Corteza Cerebral/citología , Proteína GAP-43/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Neuritas/efectos de los fármacos , Nicotina/farmacología , Células PC12 , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7
13.
ACS Chem Neurosci ; 15(11): 2322-2333, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38804618

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channel receptors that contribute to cognition, memory, and motor control in many organisms. The pharmacological targeting of these receptors, using small molecules or peptides, presents an important strategy for the development of drugs that can treat important human diseases, including neurodegenerative disorders. The Aplysia californica acetylcholine binding protein (Ac-AChBP) is a structural surrogate of the nAChR with high homology to the extracellular ligand binding domain of homopentameric nAChRs. In this study, we optimized protein-painting-based mass spectrometry to identify regions of interaction between the Ac-AChBP and several nAChR ligands. Using molecular dyes that adhere to the surface of a solubilized Ac-AChBP complex, we identified amino acid residues that constitute a contact site within the Ac-AChBP for α-bungarotoxin, choline, nicotine, and amyloid-ß 1-42. By integrating innovation in protein painting mass spectrometry with computational structural modeling, we present a new experimental tool for analyzing protein interactions of the nAChR.


Asunto(s)
Aplysia , Espectrometría de Masas , Receptores Nicotínicos , Animales , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Espectrometría de Masas/métodos , Sitios de Unión , Unión Proteica/fisiología , Proteínas Portadoras/metabolismo , Bungarotoxinas/farmacología , Bungarotoxinas/metabolismo , Bungarotoxinas/química , Acetilcolina/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Modelos Moleculares
14.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38979383

RESUMEN

Paclitaxel is a chemotherapy drug widely used for the treatment of various cancers based on its ability to potently stabilize cellular microtubules and block division in cancer cells. Paclitaxel-based treatment, however, accumulates in peripheral system sensory neurons and leads to a high incidence rate (over 60%) of chemotherapy induced peripheral neuropathy. Using an established preclinical model of paclitaxel-induced peripheral neuropathy (PIPN), we examined proteomic changes in dorsal root ganglia (DRG) of adult male mice that were treated with paclitaxel (8 mg/kg, at 4 injections every other day) relative to vehicle-treated mice. High throughput proteomics based on liquid chromatography electrospray ionization mass spectrometry identified 165 significantly altered proteins in lumbar DRG. Gene ontology enrichment and bioinformatic analysis revealed an effect of paclitaxel on pathways for mitochondrial regulation, axonal function, and inflammatory purinergic signaling as well as microtubule activity. These findings provide insight into molecular mechanisms that can contribute to PIPN in patients.

15.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38895376

RESUMEN

Local protein synthesis in axons and dendrites underpins synaptic plasticity. However, the composition of the protein synthesis machinery in distal neuronal processes and the mechanisms for its activity-driven deployment to local translation sites remain unclear. Here, we employed cryo-electron tomography, volume electron microscopy, and live-cell imaging to identify Ribosome-Associated Vesicles (RAVs) as a dynamic platform for moving ribosomes to distal processes. Stimulation via chemically-induced long-term potentiation causes RAV accumulation in distal sites to drive local translation. We also demonstrate activity-driven changes in RAV generation and dynamics in vivo, identifying tubular ER shaping proteins in RAV biogenesis. Together, our work identifies a mechanism for ribosomal delivery to distal sites in neurons to promote activity-dependent local translation.

16.
J Pharmacol Exp Ther ; 347(2): 398-409, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23965380

RESUMEN

The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 µM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 µM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 µM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.


Asunto(s)
Mentol/farmacología , Receptores de Serotonina 5-HT3/metabolismo , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Animales , Unión Competitiva , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Imidazoles/farmacología , Indoles/farmacología , Potenciales de la Membrana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Oocitos/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Ensayo de Unión Radioligante , Ratas , Receptores de Serotonina 5-HT3/genética , Transfección , Xenopus laevis
17.
Biomolecules ; 13(11)2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-38002320

RESUMEN

Mitochondria are ancient endosymbiotic double membrane organelles that support a wide range of eukaryotic cell functions through energy, metabolism, and cellular control. There are over 1000 known proteins that either reside within the mitochondria or are transiently associated with it. These mitochondrial proteins represent a functional subcellular protein network (mtProteome) that is encoded by mitochondrial and nuclear genomes and significantly varies between cell types and conditions. In neurons, the high metabolic demand and differential energy requirements at the synapses are met by specific modifications to the mtProteome, resulting in alterations in the expression and functional properties of the proteins involved in energy production and quality control, including fission and fusion. The composition of mtProteomes also impacts the localization of mitochondria in axons and dendrites with a growing number of neurodegenerative diseases associated with changes in mitochondrial proteins. This review summarizes the findings on the composition and properties of mtProteomes important for mitochondrial energy production, calcium and lipid signaling, and quality control in neural cells. We highlight strategies in mass spectrometry (MS) proteomic analysis of mtProteomes from cultured cells and tissue. The research into mtProteome composition and function provides opportunities in biomarker discovery and drug development for the treatment of metabolic and neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Proteoma , Humanos , Proteoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteómica , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas Mitocondriales/metabolismo
18.
Sci Rep ; 13(1): 11434, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454238

RESUMEN

Acetylcholinesterase (AChE) is a highly conserved enzyme responsible for the regulation of acetylcholine signaling within the brain and periphery. AChE has also been shown to participate in non-enzymatic activity and contribute to cellular development and aging. In particular, enzymatic cleavage of the synaptic AChE isoform, AChE-T, is shown to generate a bioactive T30 peptide that binds to the ⍺7 nicotinic acetylcholine receptor (nAChR) at synapses. Here, we explore intracellular mechanisms of T30 signaling within the human cholinergic neural cell line SH-SY5Y using high performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometry (ESI-MS/MS). Proteomic analysis of cells exposed to (100 nM) T30 for 3-days reveals significant changes within proteins important for cell growth. Specifically, bioinformatic analysis identifies proteins that converge onto the mammalian target of rapamycin (mTOR) pathway signaling. Functional experiments confirm that T30 regulates neural cell growth via mTOR signaling and ⍺7 nAChR activation. T30 was found promote mTORC1 pro-growth signaling through an increase in phosphorylated elF4E and S6K1, and a decrease in the autophagy LC3B-II protein. These findings are corroborated in hippocampal neurons and show that T30 promotes dendritic arborization. Taken together, our findings define mTOR as a novel pathway activated by T30 interaction with the nAChR and suggest a role for this process in human disease.


Asunto(s)
Neuroblastoma , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Acetilcolinesterasa/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Péptidos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Péptido C/metabolismo
19.
PLoS One ; 18(7): e0289098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37490473

RESUMEN

Chronic smoking is a primary risk factor for breast cancer due to the presence of various toxins and carcinogens within tobacco products. Nicotine is the primary addictive component of tobacco products and has been shown to promote breast cancer cell proliferation and metastases. Nicotine activates nicotinic acetylcholine receptors (nAChRs) that are expressed in cancer cell lines. Here, we examine the role of the α7 nAChR in coupling to heterotrimeric G proteins within breast cancer MCF-7 cells. Pharmacological activation of the α7 nAChR using choline or nicotine was found to increase proliferation, motility, and calcium signaling in MCF-7 cells. This effect of α7 nAChR on cell proliferation was abolished by application of Gαi/o and Gαq protein blockers. Specifically, application of the Gαi/o inhibitor pertussis toxin was found to abolish choline-mediated cell proliferation and intracellular calcium transient response. These findings were corroborated by expression of a G protein binding dominant negative nAChR subunit (α7345-348A), which resulted in significantly attenuating calcium signaling and cellular proliferation in response to choline. Our study shows a new role for G protein signaling in the mechanism of α7 nAChR-associated breast cancer growth.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al GTP Heterotriméricas , Receptores Nicotínicos , Humanos , Femenino , Nicotina/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Señalización del Calcio , Receptores Nicotínicos/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proliferación Celular , Colina/farmacología , Calcio/metabolismo
20.
J Neurosci ; 31(20): 7412-23, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21593325

RESUMEN

Previous studies have shown that dopamine and galanin modulate cholinergic transmission in the hippocampus, but little is known about the mechanisms involved and their possible interactions. By using resonance energy transfer techniques in transfected mammalian cells, we demonstrated the existence of heteromers between the dopamine D(1)-like receptors (D(1) and D(5)) and galanin Gal(1), but not Gal(2) receptors. Within the D(1)-Gal(1) and D(5)-Gal(1) receptor heteromers, dopamine receptor activation potentiated and dopamine receptor blockade counteracted MAPK activation induced by stimulation of Gal(1) receptors, whereas Gal(1) receptor activation or blockade did not modify D(1)-like receptor-mediated MAPK activation. Ability of a D(1)-like receptor antagonist to block galanin-induced MAPK activation (cross-antagonism) was used as a "biochemical fingerprint" of D(1)-like-Gal(1) receptor heteromers, allowing their identification in the rat ventral hippocampus. The functional role of D(1)-like-Gal receptor heteromers was demonstrated in synaptosomes from rat ventral hippocampus, where galanin facilitated acetylcholine release, but only with costimulation of D(1)-like receptors. Electrophysiological experiments in rat ventral hippocampal slices showed that these receptor interactions modulate hippocampal synaptic transmission. Thus, a D(1)-like receptor agonist that was ineffective when administered alone turned an inhibitory effect of galanin into an excitatory effect, an interaction that required cholinergic neurotransmission. Altogether, our results strongly suggest that D(1)-like-Gal(1) receptor heteromers act as processors that integrate signals of two different neurotransmitters, dopamine and galanin, to modulate hippocampal cholinergic neurotransmission.


Asunto(s)
Fibras Colinérgicas/fisiología , Hipocampo/fisiología , Receptor de Galanina Tipo 1/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D5/fisiología , Transmisión Sináptica/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Luciferasas de Renilla , Masculino , Ratas , Ratas Wistar , Receptor de Galanina Tipo 1/química , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/fisiología , Receptores de Dopamina D1/química , Receptores de Dopamina D5/química , Receptores de Galanina/química , Receptores de Galanina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA