Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36772503

RESUMEN

Continuous advancements of technologies such as machine-to-machine interactions and big data analysis have led to the internet of things (IoT) making information sharing and smart decision-making possible using everyday devices. On the other hand, swarm intelligence (SI) algorithms seek to establish constructive interaction among agents regardless of their intelligence level. In SI algorithms, multiple individuals run simultaneously and possibly in a cooperative manner to address complex nonlinear problems. In this paper, the application of SI algorithms in IoT is investigated with a special focus on the internet of medical things (IoMT). The role of wearable devices in IoMT is briefly reviewed. Existing works on applications of SI in addressing IoMT problems are discussed. Possible problems include disease prediction, data encryption, missing values prediction, resource allocation, network routing, and hardware failure management. Finally, research perspectives and future trends are outlined.


Asunto(s)
Internet de las Cosas , Dispositivos Electrónicos Vestibles , Humanos , Algoritmos , Cognición , Inteligencia , Internet
2.
Comput Biol Med ; 143: 105246, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35131610

RESUMEN

The user does not have any idea about the credibility of outcomes from deep neural networks (DNN) when uncertainty quantification (UQ) is not employed. However, current Deep UQ classification models capture mostly epistemic uncertainty. Therefore, this paper aims to propose an aleatory-aware Deep UQ method for classification problems. First, we train DNNs through transfer learning and collect numeric output posteriors for all training samples instead of logical outputs. Then we determine the probability of happening a certain class from K-nearest output posteriors of the same DNN in training samples. We name this probability as opacity score, as the paper focuses on the detection of opacity on X-ray images. This score reflects the level of aleatory on the sample. When the NN is certain on the classification of the sample, the probability of happening a class becomes much higher than the probabilities of others. Probabilities for different classes become close to each other for a highly uncertain classification outcome. To capture the epistemic uncertainty, we train multiple DNNs with different random initializations, model selection, and augmentations to observe the effect of these training parameters on prediction and uncertainty. To reduce execution time, we first obtain features from the pre-trained NN. Then we apply features to the ensemble of fully connected layers to get the distribution of opacity score during the test. We also train several ResNet and DenseNet DNNs to observe the effect of model selection on prediction and uncertainty. The paper also demonstrates a patient referral framework based on the proposed uncertainty quantification. The scripts of the proposed method are available at the following link: https://github.com/dipuk0506/Aleatory-aware-UQ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA