Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
PLoS Pathog ; 14(3): e1006894, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29513740

RESUMEN

The E3 ubiquitin ligase COP1 (Constitutive Photomorphogenesis 1) is a well known component of the light-mediated plant development that acts as a repressor of photomorphogenesis. Here we show that COP1 positively regulates defense against turnip crinkle virus (TCV) and avrRPM1 bacteria by contributing to stability of resistance (R) protein HRT and RPM1, respectively. HRT and RPM1 levels and thereby pathogen resistance is significantly reduced in the cop1 mutant background. Notably, the levels of at least two double-stranded RNA binding (DRB) proteins DRB1 and DRB4 are reduced in the cop1 mutant background suggesting that COP1 affects HRT stability via its effect on the DRB proteins. Indeed, a mutation in either drb1 or drb4 resulted in degradation of HRT. In contrast to COP1, a multi-subunit E3 ligase encoded by anaphase-promoting complex (APC) 10 negatively regulates DRB4 and TCV resistance but had no effect on DRB1 levels. We propose that COP1-mediated positive regulation of HRT is dependent on a balance between COP1 and negative regulators that target DRB1 and DRB4.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Carmovirus/inmunología , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Unión al ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Luz , Morfogénesis , Mutación , Desarrollo de la Planta , Enfermedades de las Plantas/virología , Nicotiana/inmunología , Nicotiana/virología , Ubiquitina-Proteína Ligasas/genética
2.
New Phytol ; 225(5): 2108-2121, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31622519

RESUMEN

Epigenetic modifications have emerged as an important mechanism underlying plant defence against pathogens. We examined the role of JMJ14, a Jumonji (JMJ) domain-containing H3K4 demethylase, in local and systemic plant immune responses in Arabidopsis. The function of JMJ14 in local or systemic defence response was investigated by pathogen growth assays and by analysing expression and H3K4me3 enrichments of key defence genes using qPCR and ChIP-qPCR. Salicylic acid (SA) and pipecolic acid (Pip) levels were quantified and function of JMJ14 in SA- and Pip-mediated defences was analysed in Col-0 and jmj14 plants. jmj14 mutants were compromised in both local and systemic defences. JMJ14 positively regulates pathogen-induced H3K4me3 enrichment and expression of defence genes involved in SA- and Pip-mediated defence pathways. Consequently, loss of JMJ14 results in attenuated defence gene expression and reduced Pip accumulation during establishment of systemic acquired resistance (SAR). Exogenous Pip partially restored SAR in jmj14 plants, suggesting that JMJ14 regulated Pip biosynthesis and other downstream factors regulate SAR in jmj14 plants. JMJ14 positively modulates defence gene expressions and Pip levels in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Histona Demetilasas con Dominio de Jumonji , Ácidos Pipecólicos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Ácido Salicílico/farmacología
3.
J Exp Bot ; 70(5): 1627-1638, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30843586

RESUMEN

The Arabidopsis plasma membrane-localized resistance protein RPM1 is degraded upon the induction of the hypersensitive response (HR) triggered in response to its own activation or that of other unrelated resistance (R) proteins. We investigated the role of RPM1 turnover in RPM1-mediated resistance and showed that degradation of RPM1 is not associated with HR or resistance mediated by this R protein. Likewise, the runaway cell death phenotype in the lsd1 mutant was not associated with RPM1 degradation and did not alter RPM1-derived resistance. RPM1 stability and RPM1-mediated resistance were dependent on the double-stranded RNA binding (DRB) proteins 1 and 4. Interestingly, the function of DRB1 in RPM1-mediated resistance was not associated with its role in pre-miRNA processing. The DRB3 and DRB5 proteins negatively regulated RPM1-mediated resistance and a mutation in these completely or partially restored resistance in the drb1, drb2, and drb4 mutant backgrounds. Conversely, plants overexpressing DRB5 showed attenuated RPM1-mediated resistance. A similar role for DRBs in basal and R-mediated resistance suggests that these proteins play a general role in bacterial resistance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Enfermedades de las Plantas/genética , Pseudomonas syringae/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Proteínas de Unión al ARN/metabolismo
4.
Plant Physiol ; 172(1): 221-34, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27356973

RESUMEN

The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other's nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection.


Asunto(s)
Glycine max/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/metabolismo , Respuesta de Proteína Desplegada , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Virus del Mosaico/metabolismo , Virus del Mosaico/patogenicidad , Factor 1 de Elongación Peptídica/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Potyvirus/patogenicidad , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Glycine max/genética , Glycine max/virología , Virulencia , Replicación Viral
5.
Phytopathology ; 107(12): 1452-1461, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28609156

RESUMEN

Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Plantas/inmunología , Transducción de Señal , Factores de Virulencia
6.
J Integr Plant Biol ; 59(5): 336-344, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28304135

RESUMEN

Systemic acquired resistance (SAR) is a form of broad-spectrum resistance induced in response to local infections that protects uninfected parts against subsequent secondary infections by related or unrelated pathogens. SAR signaling requires two parallel branches, one regulated by salicylic acid (SA), and the other by azelaic acid (AzA) and glycerol-3-phosphate (G3P). AzA and G3P function downstream of the free radicals nitric oxide (NO) and reactive oxygen species (ROS). During SAR, SA, AzA and G3P accumulate in the infected leaves, but only a small portion of these is transported to distal uninfected leaves. SA is preferentially transported via the apoplast, whereas phloem loading of AzA and G3P occurs via the symplast. The symplastic transport of AzA and G3P is regulated by gating of the plasmodesmata (PD). The PD localizing proteins, PDLP1 and PDLP5, regulate SAR by regulating PD gating as well as the subcellular partitioning of a SAR-associated protein.


Asunto(s)
Resistencia a la Enfermedad/fisiología , Enfermedades de las Plantas/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Dicarboxílicos/metabolismo , Glicerofosfatos/metabolismo , Óxido Nítrico/metabolismo , Floema/metabolismo , Hojas de la Planta/metabolismo , Plasmodesmos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Transducción de Señal
7.
New Phytol ; 212(3): 627-636, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27411159

RESUMEN

Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL) or the isochorismate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We investigated the relative contributions of PAL and ICS to defense-related SA accumulation in soybean (Glycine max). Soybean plants silenced for five PAL isoforms or two ICS isoforms were analyzed for SA concentrations and SA-derived defense responses to the hemibiotrophic pathogens Pseudomonas syringae and Phytophthora sojae. We show that, unlike in Arabidopsis, PAL and ICS pathways are equally important for pathogen-induced SA biosynthesis in soybean. Knock-down of either pathway shuts down SA biosynthesis and abrogates pathogen resistance. Moreover, unlike in Arabidopsis, pathogen infection is associated with the suppression of ICS gene expression. Pathogen-induced biosynthesis of SA via the PAL pathway correlates inversely with phenylalanine concentrations. Although infections with either virulent or avirulent strains of the pathogens increase SA concentrations, resistance protein-mediated response to avirulent P. sojae strains may function in an SA-independent manner. These results show that PAL- and ICS-catalyzed reactions function cooperatively in soybean defense and highlight the importance of PAL in pathogen-induced SA biosynthesis.


Asunto(s)
Vías Biosintéticas , Glycine max/enzimología , Transferasas Intramoleculares/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Transferasas Intramoleculares/genética , Isoenzimas/metabolismo , Fenilanina Amoníaco-Liasa/genética , Phytophthora/fisiología , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Pseudomonas syringae/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glycine max/genética , Glycine max/microbiología
8.
Plant Cell ; 24(4): 1654-74, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22492810

RESUMEN

The conserved cellular metabolites nitric oxide (NO) and oleic acid (18:1) are well-known regulators of disease physiologies in diverse organism. We show that NO production in plants is regulated via 18:1. Reduction in 18:1 levels, via a genetic mutation in the 18:1-synthesizing gene SUPPRESSOR OF SA INSENSITIVITY OF npr1-5 (SSI2) or exogenous application of glycerol, induced NO accumulation. Furthermore, both NO application and reduction in 18:1 induced the expression of similar sets of nuclear genes. The altered defense signaling in the ssi2 mutant was partially restored by a mutation in NITRIC OXIDE ASSOCIATED1 (NOA1) and completely restored by double mutations in NOA1 and either of the nitrate reductases. Biochemical studies showed that 18:1 physically bound NOA1, in turn leading to its degradation in a protease-dependent manner. In concurrence, overexpression of NOA1 did not promote NO-derived defense signaling in wild-type plants unless 18:1 levels were lowered. Subcellular localization showed that NOA1 and the 18:1 synthesizing SSI2 proteins were present in close proximity within the nucleoids of chloroplasts. Indeed, pathogen-induced or low-18:1-induced accumulation of NO was primarily detected in the chloroplasts and their nucleoids. Together, these data suggest that 18:1 levels regulate NO synthesis, and, thereby, NO-mediated signaling, by regulating NOA1 levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/farmacología , Ácido Oléico/metabolismo , Transducción de Señal/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Óxido Nítrico Sintasa/genética , Fenotipo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos
9.
J Exp Bot ; 65(7): 1849-55, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24591049

RESUMEN

Systemic acquired resistance (SAR) is a highly desirable form of resistance that protects against a broad-spectrum of related or unrelated pathogens. SAR involves the generation of multiple signals at the site of primary infection, which arms distal portions against subsequent secondary infections. The last decade has witnessed considerable progress, and a number of chemical signals contributing to SAR have been isolated and characterized. The diverse chemical nature of these chemicals had led to the growing belief that SAR might involve interplay of multiple diverse and independent signals. However, recent results suggest that coordinated signalling from diverse signalling components facilitates SAR in plants. This review mainly discusses organized signalling by two such chemicals, glycerol-3-phoshphate and azelaic acid, and the role of basal salicylic acid levels in G3P-conferred SAR.


Asunto(s)
Ácidos Dicarboxílicos/metabolismo , Glicerofosfatos/metabolismo , Inmunidad de la Planta , Plantas/inmunología , Ácido Salicílico/metabolismo , Inmunidad Adaptativa , Transporte Biológico
10.
ACS Sens ; 9(1): 514-523, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38195409

RESUMEN

The impact of plant pathogens on global crop yields is a major societal concern. The current agricultural diagnostic paradigm involves either visual inspection (inaccurate) or laboratory molecular tests (burdensome). While field-ready diagnostic methods have advanced in recent years, issues remain with detection of presymptomatic infections, multiplexed analysis, and requirement for in-field sample processing. To overcome these issues, we developed surface-enhanced Raman scattering (SERS)-sensing hydrogels that detect pathogens through simple contact with a leaf. In this work, we developed a novel reagentless SERS sensor for the detection of tobacco mosaic virus (TMV) and embedded it in an optimized hydrogel material to produce sensing hydrogels. To test the diagnostic application of our sensing hydrogels, we demonstrate their use to detect TMV infection in tobacco plants. This technology has the potential to shift the current agricultural diagnostic paradigm by offering a field-deployable tool for presymptomatic and multiplexed molecular identification of pathogens.


Asunto(s)
Hidrogeles , Virus del Mosaico del Tabaco , Plantas , Nicotiana , Hojas de la Planta
11.
Front Plant Sci ; 15: 1421221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224853

RESUMEN

Eukaryotic elongation factors (eEFs) are protein factors that mediate the extension of peptide chain, among which eukaryotic elongation factor 1 alpha (eEF1A) is one of the most abundant protein synthesis factors. Previously we showed that the P3 protein of Soybean mosaic virus (SMV), one of the most destructive and successful viral pathogens of soybean, targets a component of the soybean translation elongation complex to facilitate its pathogenesis. Here, we conducted a systematic analyses of the soybean eEF (GmeEF) gene family in soybean and examinedits role in virus resistance. In this study, GmeEF family members were identified and characterized based on sequence analysis. The 42 members, which were unevenly distributed across the 15 chromosomes, were renamed according to their chromosomal locations. The GmeEF members were further divided into 12 subgroups based on conserved motif, gene structure, and phylogenetic analyses. Analysis of the promoter regions showed conspicuous presence of myelocytomatosis (MYC) and ethylene-responsive (ERE) cis-acting elements, which are typically involved in drought and phytohormone response, respectively, and thereby in plant stress response signaling. Transcriptome data showed that the expression of 15 GmeEF gene family members changed significantly in response to SMV infection. To further examine EF1A function in pathogen response, three different Arabidopsis mutants carrying T-DNA insertions in orthologous genes were analyzed for their response to Turnip crinkle virus (TCV) and Cucumber mosaic virus (CMV). Results showed that there was no difference in viral response between the mutants and the wild type plants. This study provides a systematic analysis of the GmeEF gene family through analysis of expression patterns and predicted protein features. Our results lay a foundation for understanding the role of eEF gene in soybean anti-viral response.

12.
PLoS Pathog ; 7(11): e1002318, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22072959

RESUMEN

EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virología , Hidrolasas de Éster Carboxílico/metabolismo , Carmovirus/inmunología , Proteínas de Unión al ADN/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Secuencia de Aminoácidos , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas , Hidrolasas de Éster Carboxílico/biosíntesis , Hidrolasas de Éster Carboxílico/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/virología , Proteínas de Plantas/biosíntesis , Unión Proteica , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Estructura Cuaternaria de Proteína , Proteínas Represoras/metabolismo , Alineación de Secuencia , Transducción de Señal
13.
Plant Cell ; 22(3): 918-36, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20332379

RESUMEN

Resistance gene-mediated immunity confers protection against pathogen infection in a wide range of plants. A genetic screen for Arabidopsis thaliana mutants compromised for recognition of turnip crinkle virus previously identified CRT1, a member of the GHKL ATPase/kinase superfamily. Here, we demonstrate that CRT1 interacts with various resistance proteins from different structural classes, and this interaction is disrupted when these resistance proteins are activated. The Arabidopsis mutant crt1-2 crh1-1, which lacks CRT1 and its closest homolog, displayed compromised resistance to avirulent Pseudomonas syringae and Hyaloperonospora arabidopsidis. Additionally, resistance-associated hypersensitive cell death was suppressed in Nicotiana benthamiana silenced for expression of CRT1 homolog(s). Thus, CRT1 appears to be a general factor for resistance gene-mediated immunity. Since elevation of cytosolic calcium triggered by avirulent P. syringae was compromised in crt1-2 crh1-1 plants, but cell death triggered by Nt MEK2(DD) was unaffected in CRT1-silenced N. benthamiana, CRT1 likely functions at an early step in this pathway. Genome-wide transcriptome analysis led to identification of CRT1-Associated genes, many of which are associated with transport processes, responses to (a)biotic stress, and the endomembrane system. Confocal microscopy and subcellular fractionation revealed that CRT1 localizes to endosome-like vesicles, suggesting a key process in resistance protein activation/signaling occurs in this subcellular compartment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Endosomas/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Muerte Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Inmunidad Innata , Mutagénesis Insercional , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Pseudomonas syringae/fisiología , ARN de Planta/genética , Nicotiana/genética , Nicotiana/inmunología
14.
Proc Natl Acad Sci U S A ; 107(30): 13538-43, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20624951

RESUMEN

Light harvested by plants is essential for the survival of most life forms. This light perception ability requires the activities of proteins termed photoreceptors. We report a function for photoreceptors in mediating resistance (R) protein-derived plant defense. The blue-light photoreceptors, cryptochrome (CRY) 2 and phototropin (PHOT) 2, are required for the stability of the R protein HRT, and thereby resistance to Turnip Crinkle virus (TCV). Exposure to darkness or blue-light induces degradation of CRY2, and in turn HRT, resulting in susceptibility. Overexpression of HRT can compensate for the absence of PHOT2 but not CRY2. HRT does not directly associate with either CRY2 or PHOT2 but does bind the CRY2-/PHOT2-interacting E3 ubiquitin ligase, COP1. Application of the proteasome inhibitor, MG132, prevents blue-light-dependent degradation of HRT, consequently these plants show resistance to TCV under blue-light. We propose that CRY2/PHOT2 negatively regulate the proteasome-mediated degradation of HRT, likely via COP1, and blue-light relieves this repression resulting in HRT degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Criptocromos/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Carmovirus/fisiología , Criptocromos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Innata/efectos de la radiación , Immunoblotting , Luz , Microscopía Confocal , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido Salicílico/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética
15.
J Integr Plant Biol ; 55(4): 294-388, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462277

RESUMEN

The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.


Asunto(s)
Plantas/metabolismo , Evolución Biológica , Floema/anatomía & histología , Floema/metabolismo , Floema/fisiología , Plantas/anatomía & histología , Transducción de Señal/fisiología , Xilema/anatomía & histología , Xilema/metabolismo , Xilema/fisiología
16.
Bio Protoc ; 13(7): e4645, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056243

RESUMEN

Glycerol-3-phosphate (G3P) is a conserved precursor of glycerolipids that also plays an important role in plant defense. Its levels and/or metabolism are also associated with many human disorders including insulin resistance, diabetes, obesity, and cancer, among others. In plants, G3P accumulates upon pathogen infection and is a critical component of systemic acquired resistance, which confers broad spectrum disease resistance against secondary infections. G3P also plays an important role in root-shoot-root signaling in soybean that regulates incompatible interactions with nitrogen-fixing bacteria. Thus, accurate quantification of G3P is key to drawing a valid conclusion regarding its role in diverse processes ranging from lipid biosynthesis to defense. G3P quantification is further compounded by its rapid degradation in extracts prepared at room temperature. Here, we describe a simplified procedure for accurate quantitative analysis of G3P from plant tissues. G3P was extracted along with the internal standard ribitol, derivatized with N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) and analyzed by gas chromatography-coupled mass spectrometry using selective ion mode. This procedure is simple, economical, and efficient, and does not involve isotopic internal standards or multiple-step derivatizations.

17.
PLoS Genet ; 5(7): e1000545, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19578402

RESUMEN

Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Proteínas de Unión al ADN/inmunología , Inmunidad Innata , Enfermedades de las Plantas/inmunología , Ácido Salicílico/inmunología , Ácido Salicílico/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carmovirus/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Enfermedades de las Plantas/virología
18.
Essays Biochem ; 66(5): 673-681, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35920211

RESUMEN

Systemic acquired resistance (SAR), a type of long-distance immunity in plants, provides long-lasting resistance to a broad spectrum of pathogens. SAR is thought to involve the rapid generation and systemic transport of a mobile signal that prepares systemic parts of the plant to better resist future infections. Exploration of the molecular mechanisms underlying SAR have identified multiple mobile regulators of SAR in the last few decades. Examination of the relationship among several of these seemingly unrelated molecules depicts a forked pathway comprising at least two branches of equal importance to SAR. One branch is regulated by the plant hormone salicylic acid (SA), and the other culminates (based on current knowledge) with the phosphorylated sugar derivative, glycerol-3-phosphate (G3P). This review summarizes the activities that contribute to pathogen-responsive generation of SA and G3P and the components that regulate their systemic transport during SAR.


Asunto(s)
Resistencia a la Enfermedad , Ácido Salicílico , Regulación de la Expresión Génica de las Plantas , Glicerol , Glicerofosfatos , Fosfatos/metabolismo , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Plantas/metabolismo , Ácido Salicílico/metabolismo , Azúcares
19.
Sci Adv ; 8(25): eabm8791, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749505

RESUMEN

Systemic acquired resistance (SAR) involves the generation of systemically transported signal that arms distal plant parts against secondary infections. We show that two phased 21-nucleotide (nt) trans-acting small interfering RNA3a RNAs (tasi-RNA) derived from TAS3a and synthesized within 3 hours of pathogen infection are the early mobile signal in SAR. TAS3a undergoes alternate polyadenylation, resulting in the generation of 555- and 367-nt transcripts. The 555-nt transcripts likely serves as the sole precursor for tasi-RNAs D7 and D8, which cleave Auxin response factors (ARF) 2, 3, and 4 to induce SAR. Conversely, increased expression of ARF3 represses SAR. Knockout mutations in TAS3a or RNA silencing components required for tasi-RNA biogenesis compromise SAR without altering levels of known SAR-inducing chemicals. Both tasi-ARFs and the 367-nt transcripts are mobile and transported via plasmodesmata. Together, we show that tasi-ARFs are the early mobile signal in SAR.

20.
Plant Physiol ; 154(2): 833-46, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20699396

RESUMEN

Systemic acquired resistance (SAR) is a form of defense that provides resistance against a broad spectrum of pathogens in plants. Previous work indicates a role for plastidial glycerolipid biosynthesis in SAR. Specifically, mutations in FATTY ACID DESATURASE7 (FAD7), which lead to reduced trienoic fatty acid levels and compromised plastidial lipid biosynthesis, have been associated with defective SAR. We show that the defective SAR in Arabidopsis (Arabidopsis thaliana) fad7-1 plants is not associated with a mutation in FAD7 but rather with a second-site mutation in GLABRA1 (GL1), a gene well known for its role in trichome formation. The compromised SAR in gl1 plants is associated with impairment in their cuticles. Furthermore, mutations in two other components of trichome development, GL3 and TRANSPARENT TESTA GLABRA1, also impaired cuticle development and SAR. This suggests an overlap in the biochemical pathways leading to cuticle and trichome development. Interestingly, exogenous application of gibberellic acid (GA) not only enhanced SAR in wild-type plants but also restored SAR in gl1 plants. In contrast to GA, the defense phytohoromes salicylic acid and jasmonic acid were unable to restore SAR in gl1 plants. GA application increased levels of cuticular components but not trichome formation on gl1 plants, thus implicating cuticle, but not trichomes, as an important component of SAR. Our findings question the prudence of using mutant backgrounds for genetic screens and underscore a need to reevaluate phenotypes previously studied in the gl1 background.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Epidermis de la Planta/crecimiento & desarrollo , Inmunidad de la Planta , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Ciclopentanos/farmacología , Proteínas de Unión al ADN/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Giberelinas/farmacología , Lípidos de la Membrana/metabolismo , Mutación , Oxilipinas/farmacología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/inmunología , Ácido Salicílico/farmacología , Ceras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA