RESUMEN
In this work, Mn2O3/Fe2O3 (MFO) was synthesized and used to activate monopersulfate (MPS) for the degradation of ciprofloxacin (CIP). The effect of several parameters was studied on CIP degradation. Under the optimum conditions (pH = 6.3 (natural pH), MFO = 300 mg/L and MPS = 2 mM), around 92% of CIP was decomposed. Nitrite, phosphate and bicarbonate ions had a strong inhibitory effect on the MFO/MPS process while the effect of chloride and nitrate ions was neutral. The catalytic activity of MFO was also studied by other chemical oxidants such as peroxydisulfate, periodate, hydrogen peroxide, percarbonate and peracetic acid. Scavenging tests showed that the role of sulfate radicals is more than hydroxyl radicals. MFO exhibited high catalytic activity in four recycling with insignificant leaching of Mn and Fe. During CIP oxidation, 45.5% carbon mineralization occurred and antibacterial activity of treated CIP solution was reduced. Finally, MFO/MPS was applied on actual wastewater (hospital effluent) and the results showed that MFO/MPS can be considered as a practical method for the treatment of contaminated water with emerging pollutants.
Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Ciprofloxacina/farmacología , Ciprofloxacina/análisis , Óxidos , Antibacterianos/farmacología , Oxidación-Reducción , Peróxido de HidrógenoRESUMEN
The rapidly expanding global energy demand is forcing a release of regulated pollutants into water that is threatening human health. Among various wastewater remediating processes, electrocoagulation (EC) has scored a monumental success over conventional processes because it combines coagulation, sedimentation, floatation and electrochemical oxidation processes that can effectively decimate numerous stubborn pollutants. The EC processes have gained some attention through various academic and industrial publications, however critical evaluation of EC processes, choices of EC processes for various pollutants, process parameters, mechanisms, commercial EC technologies and performance enhancement via other degradation processes (DPs) integration have not been comprehensively covered to date. Therefore, the major objective of this paper is to provide a comprehensive review of 20 years of literature covering EC fundamentals, key process factors for a reactor design, process implementation, current challenges and performance enhancement by coupling EC with pivotal pollutant DPs including, electro/photo-Fenton (E/P-F), photocatalysis, sono-chemical treatment, ozonation, indirect electrochemical/advanced oxidation (AO), and biosorption that have substantially reduced metals, pathogens, toxic compound BOD, COD, colors in wastewater. The results suggest that the optimum treatment time, current density, pulse frequency, shaking speed and spaced electrode improve the pollutants removal efficiency. An elegant process design can prevent electrode passivation which is a critical limitation of EC technology. EC coupling (up or downstream) with other DPs has resulted in the removal of organic pollutants and heavy metals with a 20% improved efficiency by EC-EF, removal of 85.5% suspended solid, 76.2% turbidity, 88.9% BOD, 79.7% COD and 93% color by EC-electroflotation, 100% decolorization by EC-electrochemical-AO, reduction of 78% COD, 81% BOD, 97% color by EC-ozonation and removal of 94% ammonia, 94% BOD, 95% turbidity, >98% phosphorus by aerated EC and peroxicoagulation. The major wastewater purification achievements, future potential and challenges are described to model the future EC integrated systems.
Asunto(s)
Contaminantes Ambientales , Metales Pesados , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Amoníaco , Electrocoagulación/métodos , Humanos , Fósforo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodosRESUMEN
Pharmaceutical wastewater is a frequent kind of wastewater with high quantities of organic pollutants, although little research has been done in the area. Pharmaceutical wastewaters containing antibiotics and high salinity may impair traditional biological treatment, resulting in the propagation of antibiotic resistance genes. The potential for advanced oxidation processes (AOPs) to break down hazardous substances instead of present techniques that essentially transfer contaminants from wastewater to sludge, a membrane filter, or an adsorbent has attracted interest. Among a variety of AOPs, electrochemical systems are a feasible choice for treating pharmaceutical wastewater. Many electrochemical approaches exist now to remediate rivers polluted by refractory organic contaminants, like pharmaceutical micro-pollutants, which have become a severe environmental problem. The first part of this investigation provides the bibliometric analysis of the title search from 1970 to 2021 for keywords such as wastewater and electrochemical. We have provided information on relations between keywords, countries, and journals based on three fields plot, inter-country co-authorship network analysis, and co-occurrence network visualization. The second part introduces electrochemical water treatment approaches customized to these very distinct discarded flows, containing how processes, electrode materials, and operating conditions influence the results (with selective highlighting cathode reduction and anodic oxidation). This section looks at how electrochemistry may be utilized with typical treatment approaches to improve the integrated system's overall efficiency. We discuss how electrochemical cells might be beneficial and what compromises to consider when putting them into practice. We wrap up our analysis with a discussion of known technical obstacles and suggestions for further research.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Antibacterianos , Técnicas Electroquímicas , Oxidación-Reducción , Preparaciones Farmacéuticas , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
This review provides the alternative routes towards the valorization of dark H2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed.
Asunto(s)
Biocombustibles , Hidrógeno/metabolismo , FermentaciónRESUMEN
Microbial fuel cells represent an innovative technology which allow simultaneous waste treatment, electricity production, and environmental monitoring. This study provides a preliminary investigation of the use of terrestrial Single chamber Microbial Fuel Cells (SMFCs) as biosensors. Three cells were created using Andean soil, each one for monitoring a BOD concentration of synthetic washed rice wastewater (SRWW) of 10, 100, and 200 mg/L for SMFC1, SMFC2 and SMFC3, respectively. The results showed transient, exponential, and steady stages in the SMFCs. The maximum open circuit voltage (OCV) peaks were reached during the elapsed time of the transient stages, according to the tested BOD concentrations. A good linearity between OCV and time was observed in the increasing stage. The average OCV in this stage increased independently of the tested concentrations. SMFC1 required less time than SMFC2 to reach the steady stage, suggesting the BOD concentration is an influencing factor in SMFCs, and SMFC3 did not reach it. The OCV ratios were between 40.6-58.8 mV and 18.2-32.9 mV for SMFC1 and SMFC2. The reproducibility of the SMFCs was observed in four and three cycles for SMFC1 and SMFC2, respectively. The presented SMFCs had a good response and reproducibility as biosensor devices, and could be an alternative for environmental monitoring.
Asunto(s)
Fuentes de Energía Bioeléctrica , Análisis de la Demanda Biológica de Oxígeno/métodos , Técnicas Biosensibles/métodos , Oryza/química , Aguas Residuales/química , Modelos Lineales , Reproducibilidad de los ResultadosRESUMEN
Electrochemical oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) with a BDD anode have been comparatively assessed to remediate solutions of Red CL and/or Red WB azo dyes from real raw water. For the EO process in 50 mM Na2SO4 at pH 3.0, the main oxidant was the heterogeneous â¢OH generated at the anode, whereas in EF and PEF, the cathodic production of H2O2 and the addition of 0.50 mM Fe2+ catalyst additionally originated homogeneous â¢OH that enhanced the oxidation of organics. In PEF, the solution was illuminated with a 6 W UVA light. An almost total discoloration was always found operating with a 1:1 mixture of 200 mg L-1 of both dyes in 60 min, whose efficiency increased in the order of EO < EF < PEF. The HPLC analysis of the dye mixture treated by PEF disclosed that its degradation process agreed with its discoloration. A high 74% of COD was reduced due to the oxidative action of hydroxyl radicals and the photolysis of final Fe(III)-carboxylate species with UVA irradiation. The process was accompanied by an energy consumption of 0.76 kWh (g COD)-1, a value similar to the energy consumed by the applied UVA light.
Asunto(s)
Compuestos Azo , Boro , Colorantes , Diamante , Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua , Colorantes/química , Contaminantes Químicos del Agua/química , Boro/química , Compuestos Azo/química , Diamante/química , Peróxido de Hidrógeno/química , Curtiembre , Técnicas Electroquímicas , Fotólisis , Rayos Ultravioleta , Eliminación de Residuos Líquidos/métodos , Hierro/químicaRESUMEN
Anaerobically-treated palm oil mill effluent (POME) still has unacceptable properties for water recycling and reuse, with an unpleasant appearance due to the brownish color caused by tannins and phenolic compounds. This study proposes an approach for treating anaerobically-treated POME for water recycling by combining organic precipitation, electrocoagulation (EC), and ion-exchange resin, followed by reverse osmosis (RO) membrane filtration in series. The results indicated that the organic precipitation enhanced the efficiency of EC treatment in reducing the concentrations of tannins, color, and chemical oxygen demand (COD) of the anaerobically-treated POME effluent, with reductions of 95.73%, 96.31%, and 93.96% for tannin, color, and COD, respectively. Moreover, organic precipitation affected the effectiveness of Ca2+ and Mg2+ ion removal using ion exchange resin and RO membrane filtration. Without prior organic precipitation, the ion-exchange resin process required a longer contact time, and the RO membrane filtration treatment was hardly effective in removing total dissolved solids (TDS). The combined process gave a water quality that meets the criteria set by the Thailand Ministry of Industry for industrial boiler use (COD 88 mg/L, TDS <0.001 mg/L, water hardness <5 mg-CaCO3/L, and pH 6.9).
Asunto(s)
Filtración , Resinas de Intercambio Iónico , Ósmosis , Aceite de Palma , Eliminación de Residuos Líquidos , Aceite de Palma/química , Filtración/métodos , Resinas de Intercambio Iónico/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Membranas Artificiales , Purificación del Agua/métodos , Electrocoagulación/métodos , Anaerobiosis , Residuos Industriales/análisis , Análisis de la Demanda Biológica de Oxígeno , Taninos/química , Taninos/análisis , Precipitación Química , Aguas Residuales/químicaRESUMEN
Despite the significant removal of chemical oxygen demand (COD) by anaerobic digestion, anaerobically-treated palm oil mill effluent (POME) still contains tannins and other phenolic compounds, resulting in residual COD and a brownish color. In this study, we investigated the removal of tannins from anaerobically treated POME using protein-tannin complexation in conjunction with electrocoagulation. The amino acid composition of the protein, aqueous pH, and protein: tannin ratios were found to be important parameters affecting the tannin removal efficiency. Pig blood protein was superior to casein protein in removing tannins, possibly because it had aspartic acid as the major amino acid component. At an optimal condition with a pig blood protein: tannin ratio of 0.33 (w/w), a current density of 30 mA/cm2, pH 5, and an electrolysis time of 10 min, the removals of tannins, COD, and color were 93%, 96%, and 97%, respectively.
Asunto(s)
Aceites de Plantas , Taninos , Animales , Porcinos , Aceite de Palma , Aceites de Plantas/química , Eliminación de Residuos Líquidos/métodos , Residuos Industriales/análisis , Electrocoagulación/métodos , AminoácidosRESUMEN
Microbial mutualistic interaction or synthetic microbiology evolves closely from the concept of cell-cell relations in a complex microbial community, which plays a crucial role in waste degradation, bioremediation, and bioenergy generation. Recently, the application of synthetic microbial consortia has renewed attention in the field of bioelectrochemistry. In the past few years, the influence of microbial mutualistic interaction has been extensively studied in bioelectrochemical systems (BES), especially in microbial fuel cells (MFCs). Nevertheless, synthetic microbial consortia were found to exhibit superior bioremediation performance compared to single strains of microbes for polycyclic aromatic hydrocarbons, synthetic dyes, polychlorinated biphenyls, and other organic pollutants compared to the respective single microbial species. However, a comprehensive understanding of intermicrobial interactions, specifically the metabolic pathways in a mixed-cultured microbial community system, is still lacking. In this study, we have comprehensively reviewed the possible pathways for executing intermicrobial communication within a complex microbial community consortium with various underlying pathways. The influence of mutualistic interactions on the power generation of MFCs and wastewater biodegradation has been widely reviewed. We argue that this study would motivate the design and construction of potential synthetic microbial consortia to stimulate the extraction of bioelectricity and the biodegradation of contaminants.
Asunto(s)
Fuentes de Energía Bioeléctrica , Biodegradación Ambiental , Fuentes de Energía Bioeléctrica/microbiología , Interacciones Microbianas , Consorcios Microbianos , Aguas ResidualesRESUMEN
Electrocoagulation (EC) is an excellent and promising technology in wastewater treatment, as it combines the benefits of coagulation, flotation, and electrochemistry. During the last decade, extensive researches have focused on removal of emerging contaminants by using electrocoagualtion, due to its several advantages like compactness, cost-effectiveness, efficiency, low sludge production, and eco-friendness. Emerging contaminants (ECs) are micropollutants found in trace amounts that discharging into conventional wastewater treatment (WWT) plants entering surface waters and imposing a high threat to human and aquatic life. Various studies reveal that about 90% of emerging contaminants are disposed unscientifically into water bodies, creating problems to public health and environment. The studies on removal of emerging contaminants from wastewater are by global researchers are critically reviewed. The core findings proved that still more research required into optimization of parameters, system design, and economic feasibility to explore the potential of EC combined systems. This review has introduced an innovative collection of current knowledge on electro-coagulation for the removal of emerging contaminants.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Electrocoagulación , Humanos , Aguas del Alcantarillado , Aguas Residuales , Contaminantes Químicos del Agua/análisisRESUMEN
The detection of pathogenic bacteria using biosensing techniques could be a potential alternative to traditional culture based methods. However, the low specificity and sensitivity of conventional biosensors, critically related to the choice of bio-recognition elements, limit their practical applicability. Mammalian antibodies have been widely investigated as biorecognition ligands due to high specificity and technological advancement in antibody production. However, antibody-based biosensors are not considered as an efficient approach due to the batch-to-batch inconsistencies as well as low stability. In recent years, antimicrobial peptides (AMPs) have been increasingly investigated as ligands as they have demonstrated high stability and possessed multiple sites for capturing bacteria. The conjugation of chemo-selective groups with AMPs has allowed effective immobilization of peptides on biosensor surface. However, the specificity of AMPs is a major concern for consideration as an efficient ligand. In this article, we have reviewed the advances and concerns, particularly the selectivity of AMPs for specific detection of pathogenic bacteria. This review also focuses the state-of-the-art mechanisms, challenges and prospects for designing potential AMP conjugated biosensors. The application of AMP in different biosensing transducers such as electrochemical, optical and piezoelectric varieties has been widely discussed. We argue that this review would provide insights to design and construct AMP conjugated biosensors for the pathogenic bacteria detection.
Asunto(s)
Péptidos Antimicrobianos , Técnicas Biosensibles , Animales , Bacterias , Técnicas Biosensibles/métodos , Ligandos , MamíferosRESUMEN
The continual discharge of emerging inorganic pollutants into natural aquatic systems and their negative effects on the environment have motivated the researchers to explore and develop clean and efficient water treatment strategies. Electrocoagulation (EC) is a rapid and promising pollutant removal approach that does not require any chemical additives or complicated process management. Therefore, inorganic pollutant treatment via the EC process is considered one of the most feasible processes. The potential developments of EC process may make the process a wise choice for water treatment in the future. Thus, the present study mainly focuses on the use of EC technology to remove nutrients and other emerging inorganic pollutants from water medium. The operating factors that influence EC process efficiency are explained. The major advancement of the EC technique as well as field-implemented units are also discussed. Overall, this study mainly focuses on emerging issues, present advancements, and techno-economic considerations in EC process.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Electrocoagulación/métodos , Electrodos , Nutrientes , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Purificación del Agua/métodosRESUMEN
While the potable water disinfection regimen has significantly reduced waterborne diseases, development of disinfection byproducts (DBP) during this process has brought a global threat to the environment and human health. The most notorious water pollutant, humic acid (HA), transforms into carcinogenic byproducts during the disinfection process (chlorination) of water treatment. HA removal methods are neither economic nor widely available. This study addresses the most urgent global issue of HA removal by developing an innovative and self-regenerative process based on a low-cost and self-regenerative calf bone char (CBC) that removed 92.1-100% of HA. CBC-based HA removal has not been described yet. The developed CBC, as a super adsorbent of HA, was initially characterized by a scanning electron microscope. Various parameters of adsorption/desorption and self-regeneration of CBC adsorbent were experimentally determined. Results show that prepared CBC with a 112 m2/g surface area exhibited adsorption of 38.08 mg/g (HA = 20 mg/L, pH = 4.0) which is several folds higher than the typical amount of HA present in water. The 30 m reaction time was enough to remove HA which is the shorter HA time in comparison to other similar studies. The increase of HA from 0.5 to 5 g/L, raises % HA removal (36.7-99.8%) while a pH decrease (10-4) increases adsorption (12.3-98.3%). The adsorption data fitted well with the pseudo-second-order model and the Langmuir isotherm which demonstrate that adsorption takes place by a monolayer formation. Thermodynamic constants supported the endothermic, spontaneous and reversible nature of adsorption which can attain 100% HA removal. 100% regeneration of exhausted CBC by NaOH further supports the sustainability of the process. CBC as a new adsorbent material thus provides an economical and sustainable water pre-treatment procedure. The present study provides technical guidance for building a cost-effective and scalable process capable of providing clean water.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Humanos , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Cinética , Termodinámica , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodosRESUMEN
The formation of bulking and foaming in biological wastewater treatment could cause a series of operational issues with biomass and effluent quality, ultimately affect the treatment performance of the system. The essential parameters influencing the growth of bulking and foaming bacteria are comprehensively summarised in this paper. Existing bulking and foaming control approached are critically reviewed and addressed, as well as their drawbacks and limitations. Despite the abundance of information and implementation, a complete control technique for limiting filamentous sludge bulking and foaming remains insufficient. Magnetic field application is emphasised as a viable control strategy in this regard. The present review study provides new insight of this application by comparing the use of magnetic fields to conventional treatments. Future outlooks on the use of magnetic fields to prevent BFB proliferation were also highlighted.
Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Bacterias , Campos Magnéticos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodosRESUMEN
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Asunto(s)
Microalgas , Biocombustibles , Biomasa , Biotecnología , Microalgas/genética , FotobiorreactoresRESUMEN
Bioelectrochemical systems (BES) have the potential to be used in a variety of applications such as waste biorefinery, pollutants removal, CO2 capture, and the electrosynthesis of clean and renewable biofuels or byproducts, among others. In contrast, many technical challenges need to be addressed before BES can be scaled up and put into real-world applications. Utilizing BES, this review article presents a state-of-the-art overall view of crucial concepts and the most recent innovative results and achievements acquired from the BES system. Special attention is placed on a hybrid approach for product recovery and wastewater treatment. There is also a comprehensive overview of waste biorefinery designs that are included. In conclusion, the significant obstacles and technical concerns found throughout the BES studies are discussed, and suggestions and future requirements for the virtual usage of the BES concept in actual waste treatment are outlined.
Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Biocombustibles , Aguas Residuales/análisis , Purificación del Agua/métodosRESUMEN
A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
RESUMEN
Continuous fermentation of dilute acid-pretreated de-oiled rice bran (DRB) to butanol by the Clostridium acetobutylicum YM1 strain was investigated. Pretreatment of DRB with dilute sulfuric acid (1%) resulted in the production of 42.12 g/L total sugars, including 25.57 g/L glucose, 15.1 g/L xylose and 1.46 g/L cellobiose. Pretreated-DRB (SADRB) was used as a fermentation medium at various dilution rates, and a dilution rate of 0.02 h-1 was optimal for solvent production, in which 11.18 g/L of total solvent was produced (acetone 4.37 g/L, butanol 5.89 g/L and ethanol 0.92 g/L). Detoxification of SADRB with activated charcoal resulted in the high removal of fermentation inhibitory compounds. Fermentation of detoxified-SADRB in continuous fermentation with a dilution rate of 0.02 h-1 achieved higher concentrations of solvent (12.42 g/L) and butanol (6.87 g/L), respectively, with a solvent productivity of 0.248 g/L.h. This study showed that the solvent concentration and productivity in continuous fermentation from SADRB was higher than that obtained from batch culture fermentation. This study also provides an economic assessment for butanol production in continuous fermentation process from DRB to validate the commercial viability of this process.
Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Clostridium acetobutylicum/metabolismo , Aceite de Salvado de Arroz/metabolismo , 1-Butanol , Acetona , Butanoles/metabolismo , Etanol , Fermentación/fisiología , Glucosa , Oryza/química , Oryza/metabolismo , SolventesRESUMEN
Microbial electrolysis cells (MECs) are perceived as a potential and promising innovative biotechnological tool that can convert carbon-rich waste biomass or wastewater into hydrogen (H2) or other value-added chemicals. Undesired methane (CH4) producing H2 sinks, including methanogens, is a serious challenge faced by MECs to achieve high-rate H2 production. Methanogens can consume H2 to produce CH4 in MECs, which has led to a drop of H2 production efficiency, H2 production rate (HPR) and also a low percentage of H2 in the produced biogas. Organized inference related to the interactions of microbes and potential processes has assisted in understanding approaches and concepts for inhibiting the growth of methanogens and profitable scale up design. Thus, here in we review the current developments and also the improvements constituted for the reduction of microbial H2 losses to methanogens. Firstly, the greatest challenge in achieving practical applications of MECs; undesirable microorganisms (methanogens) growth and various studied techniques for eliminating and reducing methanogens activities in MECs were discussed. Additionally, this extensive review also considers prospects for stimulating future research that could help to achieve more information and would provide the focus and path towards MECs as well as their possibilities for simultaneously generating H2 and waste remediation.
Asunto(s)
Fuentes de Energía Bioeléctrica , Electrólisis/métodos , Hidrógeno/metabolismo , Metano/biosíntesis , Reactores Biológicos/microbiología , ElectrodosRESUMEN
Bio-electrochemical systems (BESs) are the microbial systems which are employed to produce electricity directly from organic wastes along with some valuable chemicals production such as medium chain fatty acids; acetate, butyrate and alcohols. In this review, recent updates about value-added chemicals production concomitantly with the production of gaseous fuels like hydrogen and methane which are considered as cleaner for the environment have been addressed. Additionally, the bottlenecks associated with the conversion rates, lower yields and other aspects have been mentioned. In spite of its infant stage development, this would be the future trend of energy, biochemicals and electricity production in greener and cleaner pathway with the win-win situation of organic waste remediation. Henceforth, this review intends to summarise and foster the progress made in the BESs and discusses its challenges and outlook on future research advances.