Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 555(7695): 256-259, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29489750

RESUMEN

The TGFß pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFß signalling could have far-reaching implications in many other cell types and in diseases such as cancer.


Asunto(s)
Adenosina/análogos & derivados , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , ARN Mensajero/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Activinas/metabolismo , Adenosina/metabolismo , Animales , Proteínas de Ciclo Celular , Epigénesis Genética , Humanos , Metilación , Metiltransferasas/química , Metiltransferasas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteína Homeótica Nanog/metabolismo , Proteína Nodal/metabolismo , Proteínas Nucleares/metabolismo , Células Madre Pluripotentes/citología , Unión Proteica , Factores de Empalme de ARN , ARN Mensajero/química , ARN Mensajero/genética , Transducción de Señal , Transcriptoma
2.
Nanomedicine ; 14(8): 2598-2608, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30172863

RESUMEN

There is an acute clinical need for small-diameter vascular grafts as a treatment option for cardiovascular disease. Here, we used an intelligent design system to recreate the natural structure and hemodynamics of small arteries. Nano-fibrous tubular scaffolds were fabricated from blends of polyvinyl alcohol and gelatin with inner helices to allow a near physiological spiral flow profile, using the electrospinning technique. Human coronary artery endothelial cells (ECs) were seeded on the inner surface and their viability, distribution, gene expression of mechanosensitive and adhesion molecules compared to that in conventional scaffolds, under static and flow conditions. We show significant improvement in cell distribution in helical vs. conventional scaffolds (94% ±â€¯9% vs. 82% ±â€¯7.2%; P < 0.05) with improved responsiveness to shear stress and better ability to withhold physiological pressures. Our helical vascular scaffold provides an improved niche for EC growth and may be attractive as a potential small diameter vascular graft.


Asunto(s)
Proliferación Celular , Vasos Coronarios/citología , Células Endoteliales/citología , Nanofibras/química , Ingeniería de Tejidos , Andamios del Tejido/química , Prótesis Vascular , Adhesión Celular , Células Cultivadas , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Humanos
3.
PLoS One ; 17(11): e0269122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36413521

RESUMEN

RB is a well-known cell cycle regulator controlling the G1 checkpoint. Previous reports have suggested that it can influence cell fate decisions not only by regulating cell proliferation and survival but also by interacting with transcription factors and epigenetic modifiers. However, the functional redundancy of RB family proteins (RB, RBL1 and RBL2) renders it difficult to investigate their roles during early development, especially in human. Here, we address this problem by generating human embryonic stem cells lacking RB family proteins. To achieve this goal, we first introduced frameshift mutations in RBL1 and RBL2 genes using the CRISPR/Cas9 technology, and then integrated the shRNA-expression cassette to knockdown RB upon tetracycline treatment. The resulting RBL1/2_dKO+RB_iKD cells remain pluripotent and efficiently differentiate into the primary germ layers in vitro even in the absence of the RB family proteins. In contrast, we observed that subsequent differentiation into foregut endoderm was impaired without the expression of RB, RBL1 and RBL2. Thus, it is suggested that RB proteins are dispensable for the maintenance and acquisition of cell identities during early development, but they are essential to generate advanced derivatives after the formation of primary germ layers. These results also indicate that our RBL1/2_dKO+RB_iKD cell lines are useful to depict the detailed molecular roles of RB family proteins in the maintenance and generation of various cell types accessible from human pluripotent stem cells.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Humanos , Diferenciación Celular/fisiología , Endodermo/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes/metabolismo , Proteína de Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/genética
4.
iScience ; 16: 192-205, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31195238

RESUMEN

Maturity-onset diabetes of the young 1 (MODY1) is a monogenic diabetes condition caused by heterozygous HNF4A mutations. We investigate how HNF4A haploinsufficiency from a MODY1/HNF4A mutation influences the development of foregut-derived liver and pancreatic cells through differentiation of human induced pluripotent stem cells from a MODY1 family down the foregut lineage. In MODY1-derived hepatopancreatic progenitors, which expressed reduced HNF4A levels and mislocalized HNF4A, foregut genes were downregulated, whereas hindgut-specifying HOX genes were upregulated. MODY1-derived hepatocyte-like cells were found to exhibit altered morphology. Hepatic and ß cell gene signatures were also perturbed in MODY1-derived hepatocyte-like and ß-like cells, respectively. As mutant HNF4A (p.Ile271fs) did not undergo complete nonsense-mediated decay or exert dominant negativity, HNF4A-mediated loss of function is likely due to impaired transcriptional activation of target genes. Our results suggest that in MODY1, liver and pancreas development is perturbed early on, contributing to altered hepatic proteins and ß cell defects in patients.

5.
Stem Cell Reports ; 12(1): 165-179, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30595546

RESUMEN

Cell cycle progression and cell fate decisions are closely linked in human pluripotent stem cells (hPSCs). However, the study of these interplays at the molecular level remains challenging due to the lack of efficient methods allowing cell cycle synchronization of large quantities of cells. Here, we screened inhibitors of cell cycle progression and identified nocodazole as the most efficient small molecule to synchronize hPSCs in the G2/M phase. Following nocodazole treatment, hPSCs remain pluripotent, retain a normal karyotype and can successfully differentiate into the three germ layers and functional cell types. Moreover, genome-wide transcriptomic analyses on single cells synchronized for their cell cycle and differentiated toward the endoderm lineage validated our findings and showed that nocodazole treatment has no effect on gene expression during the differentiation process. Thus, our synchronization method provides a robust approach to study cell cycle mechanisms in hPSCs.


Asunto(s)
Ciclo Celular , Técnicas de Reprogramación Celular/métodos , Células Madre Embrionarias Humanas/citología , Diferenciación Celular , Línea Celular , Endodermo/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Cariotipo , Nocodazol/farmacología , Transcriptoma , Moduladores de Tubulina/farmacología
6.
Nat Commun ; 6: 7405, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26080734

RESUMEN

Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.


Asunto(s)
Cartílago Hialino , Células Madre Mesenquimatosas/efectos de los fármacos , Mioglobina/farmacología , Oxígeno/administración & dosificación , Ingeniería de Tejidos/métodos , Escherichia coli , Glicolatos/química , Humanos , Mioglobina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA