Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 43: 337-353, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32101483

RESUMEN

Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.


Asunto(s)
Encéfalo/fisiología , Células Enteroendocrinas/fisiología , Sinapsis/fisiología , Nervio Vago/fisiología , Animales , Humanos , Neuronas/fisiología , Transducción de Señal/fisiología
2.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L953-L964, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32159971

RESUMEN

The lungs and the immune and nervous systems functionally interact to respond to respiratory environmental exposures and infections. The lungs are innervated by vagal sensory neurons of the jugular and nodose ganglia, fused together in smaller mammals as the jugular-nodose complex (JNC). Whereas the JNC shares properties with the other sensory ganglia, the trigeminal (TG) and dorsal root ganglia (DRG), these sensory structures express differential sets of genes that reflect their unique functionalities. Here, we used RNA sequencing (RNA-seq) in mice to identify the differential transcriptomes of the three sensory ganglia types. Using a fluorescent retrograde tracer and fluorescence-activated cell sorting, we isolated a defined population of airway-innervating JNC neurons and determined their differential transcriptional map after pulmonary exposure to lipopolysaccharide (LPS), a major mediator of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) after infection with gram-negative bacteria or inhalation of organic dust. JNC neurons activated an injury response program, leading to increased expression of gene products such as the G protein-coupled receptor Cckbr, inducing functional changes in neuronal sensitivity to peptides, and Gpr151, also rapidly induced upon neuropathic nerve injury in pain models. Unique JNC-specific transcripts, present at only minimal levels in TG, DRG, and other organs, were identified. These included TMC3, encoding for a putative mechanosensor, and urotensin 2B, a hypertensive peptide. These findings highlight the unique properties of the JNC and reveal that ALI/ARDS rapidly induces a nerve injury-related state, changing vagal excitability.


Asunto(s)
Ganglio Nudoso/efectos de los fármacos , Neumonía/genética , Receptor de Colecistoquinina B/genética , Células Receptoras Sensoriales/efectos de los fármacos , Transcriptoma , Traumatismos del Nervio Vago/genética , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/inmunología , Ganglios Espinales/patología , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ganglio Nudoso/inmunología , Ganglio Nudoso/patología , Hormonas Peptídicas/genética , Hormonas Peptídicas/inmunología , Neumonía/inducido químicamente , Neumonía/inmunología , Neumonía/patología , Receptor de Colecistoquinina B/inmunología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/patología , Análisis de Secuencia de ARN , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/inmunología , Ganglio del Trigémino/patología , Traumatismos del Nervio Vago/inducido químicamente , Traumatismos del Nervio Vago/inmunología , Traumatismos del Nervio Vago/patología
3.
Science ; 361(6408)2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30237325

RESUMEN

The brain is thought to sense gut stimuli only via the passive release of hormones. This is because no connection has been described between the vagus and the putative gut epithelial sensor cell-the enteroendocrine cell. However, these electrically excitable cells contain several features of epithelial transducers. Using a mouse model, we found that enteroendocrine cells synapse with vagal neurons to transduce gut luminal signals in milliseconds by using glutamate as a neurotransmitter. These synaptically connected enteroendocrine cells are referred to henceforth as neuropod cells. The neuroepithelial circuit they form connects the intestinal lumen to the brainstem in one synapse, opening a physical conduit for the brain to sense gut stimuli with the temporal precision and topographical resolution of a synapse.


Asunto(s)
Tronco Encefálico/fisiología , Células Enteroendocrinas/metabolismo , Intestino Delgado/citología , Sinapsis , Animales , Fenómenos Electrofisiológicos , Células Enteroendocrinas/citología , Proteínas Fluorescentes Verdes/metabolismo , Intestino Delgado/fisiología , Ratones , Neuronas/citología , Transducción de Señal , Nervio Vago/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
4.
J Vis Exp ; (110)2016 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-27168016

RESUMEN

Somatosensory nerves transduce thermal, mechanical, chemical, and noxious stimuli caused by both endogenous and environmental agents. The cell bodies of these afferent neurons are located within the sensory ganglia. Sensory ganglia innervate a specific organ or portion of the body. For instance, the dorsal root ganglia (DRG) are located in the vertebral column and extend processes throughout the body and limbs. The trigeminal ganglia are located in the skull and innervate the face, and upper airways. Vagal afferents of the nodose ganglia extend throughout the gut, heart, and lungs. The nodose neurons control a diverse array of functions such as: respiratory rate, airway irritation, and cough reflexes. Thus, to understand and manipulate their function, it is critical to identify and isolate airway specific neuronal sub-populations. In the mouse, the airways are exposed to a fluorescent tracer dye, Fast Blue, for retrograde tracing of airway-specific nodose neurons. The nodose ganglia are dissociated and fluorescence activated cell (FAC) sorting is used to collect dye positive cells. Next, high quality ribonucleic acid (RNA) is extracted from dye positive cells for next generation sequencing. Using this method airway specific neuronal gene expression is determined.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neuronas Aferentes/química , Ganglio Nudoso/química , Animales , Ganglios Espinales , Ratones , Células Receptoras Sensoriales , Nervio Vago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA