Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 19(47): 9139-9145, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37847173

RESUMEN

Try and encapsulate microparticles inside the cores of microcapsules and you will often find that particles adhere to the liquid-liquid interface in a phenomenon known as Pickering stabilization. Particles will remain irreversibly trapped and embedded within the subsequently formed microcapsule membrane. In cases where the encapsulant particles must remain suspended inside the microcapsule core to retain their desired properties or behaviours, Pickering stabilization is detrimental. Here we demonstrate a general procedure using yield stress materials as the core material, where the yield stress of the gel is strong enough to suspend particles against sedimentation, but weak enough to allow spatial manipulation of encapsulant particles using an external field. This external field imparts enough force on particles to disrupt the supporting network and allow particle mobility after encapsulation.

2.
Polymers (Basel) ; 14(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36235988

RESUMEN

Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet. Incorporation of silver nanoparticles, essential oils and natural plant extracts as antimicrobial agents in/on polymeric matrices provides improved antifungal, antibacterial and antiviral properties. This paper reviews recent developments in antifungal, antibacterial and antiviral packaging incorporating natural or synthetic compounds using preparation methods including extrusion, solvent casting and surface modification treatment for surface coating and their applications in several foods (i.e., bakery products, fruits and vegetables, meat and meat products, fish and seafood and milk and dairy foods). Findings showed that antimicrobial material as films, coated films, coating and pouches exhibited efficient antimicrobial activity in vitro but lower activity in real food systems. Antimicrobial activity depends on (i) polar or non-polar food components, (ii) interactions between antimicrobial compounds and the polymer materials and (iii) interactions between environmental conditions and active films (i.e., relative humidity, oxygen and water vapor permeability and temperature) that impact the migration or diffusion of active compounds in foods. Knowledge gained from the plethora of existing studies on antimicrobial polymers can be effectively utilized to develop multifunctional antimicrobial materials that can protect food products and packaging surfaces from SARS-CoV-2 contamination.

3.
Polymers (Basel) ; 14(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36145938

RESUMEN

Polymeric materials including plastic and paper are commonly used as packaging for bakery products. The incorporation of active substances produces functional polymers that can effectively retain the quality and safety of packaged products. Polymeric materials can be used to produce a variety of package forms such as film, tray, pouch, rigid container and multilayer film. This review summarizes recent findings and developments of functional polymeric packaging for bakery products. Functional polymerics are mainly produced by the incorporation of non-volatile and volatile active substances that effectively retain the quality of packaged bakery products. Antimicrobial agents (either synthetic or natural substances) have been intensively investigated, whereas advances in coating technology with functional materials either as edible coatings or non-edible coatings have also preserved the quality of packaged bakery products. Recent patents demonstrate novel structural packaging designs combined with active functions to extend the shelf life of bakery products. Other forms of active packaging technology for bakery products include oxygen absorbers and ethanol emitters. The latest research progress of functional polymeric packaging for bakery products, which provides important reference value for reducing the waste and improving the quality of packaged products, is demonstrated. Moreover, the review systematically analyzed the spoilage factors of baked products from physicochemical, chemical and microbiological perspectives. Functional packaging using polymeric materials can be used to preserve the quality of packaged bakery products.

4.
Sci Rep ; 10(1): 10264, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581230

RESUMEN

Colloidal based films have been widely developed for a wide range of applications including chemical and electrical barrier coatings, photonic materials, biomaterials, and pharmaceutical oral drug delivery. Many previous studies investigate methods to generate uniformity or desired stratification of the final components with a desired microstructure. Few studies have been able to investigate this microstructure in-situ during drying. This experimental study directly tracks fluorescent colloids that are either stable in suspension or have attractive interactions during the drying process using high speed laser scanning confocal microscopy to obtain details of microstructural evolution during drying. The colloidal microstructure in stable suspensions evolves continuously during drying. Microstructures in these systems have a signature Voronoi polyhedra distribution that is defined by lognormal curve having a constant standard deviation that only depends on its chemical composition. Those formulations having strongly attractive constituents have microstructure that is heterogeneous and non-monotonic due to the mechanics associated with internal convection and capillary forces. Toward the end of drying, the influence of the mode of microstructure rearrangements remains evident.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA