RESUMEN
Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For â¼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.
Asunto(s)
Fibrosis Quística , Antibacterianos/uso terapéutico , Cromatografía Liquida , Fibrosis Quística/tratamiento farmacológico , Humanos , Espectrometría de Masas , EsputoRESUMEN
In vitro infection models are important for studying the effects of antimicrobials on microbial growth and metabolism. However, many models lack important biological components that resemble the polymicrobial nature of chronic wounds or infections. In this study, we developed a perfused meat model that supports the growth of the human pathogen Pseudomonas aeruginosa in a native meat microbial background to investigate the impact of antibiotics and hydrogen peroxide on polymicrobial community growth and metabolism. P. aeruginosa plays an important role as an etiological agent involved in chronic infections and is a common opportunistic pathogen. Chemical stressors in the form of hydrogen peroxide, carbenicillin, and gentamicin were perfused through the meat with polymicrobial growth on the surface. The relative abundances of P. aeruginosa and the background microbial community were analyzed by cell viability assays, and metabolic changes of the entire community in response to different antimicrobial treatments were characterized by GC-MS analysis of volatile organic compounds. The meat background community was characterized by amplicon sequencing. Relative densities of P. aeruginosa and background microbiota were similar under control conditions. Antimicrobial stressors, even at sub-inhibitory, physiologically relevant concentrations, spurred P. aeruginosa dominance of the meat surface community. Volatile metabolite ion intensity levels showed that antibacterial treatments drive changes in microbial metabolism. The abundance of the P. aeruginosa-derived metabolite, acetophenone, remained stable with treatment, whereas the relative abundances of 2-butanone, 2-nonanone, and 2-aminoacetophenone changed in response to treatment, suggesting these could serve as biomarkers of infection. Our model recapitulates some of the physiological conditions of chronic wounds and facilitates high throughput experiments without the high cost of in vivo models. Expanded use of this perfusion model will contribute to the understanding of polymicrobial growth and metabolism in the context of chronic wounds and infections.
Asunto(s)
Antiinfecciosos , Microbiota , Infecciones por Pseudomonas , Antibacterianos/farmacología , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosaRESUMEN
A MAPKK-like mitotic kinase, TOPK, implies the formation of mitotic spindles and spindle midzone and accomplishing cytokinesis, however, its underlying mechanism remains unclear. A microtubule bundling protein, PRC1, plays a pivotal role in the formation of mitotic spindles and spindle midzone. Because of their functional resemblance, we attempted to clarify the links between these two molecules. TOPK supported mitotic advance via the cdk1/cyclin B1-dependent phosphorylation of PRC1. TOPK induced the phosphorylation of PRC1 at T481 in vivo, however, TOPK did not phosphorylate PRC1 in vitro. TOPK induced the phosphorylation of PRC1 at T481 only when the cdk1/cyclin B1 existed simultaneously in vitro. Both the enzymatic activity of TOPK and association competence of TOPK with PRC1 were mandatory for this phosphorylation. TOPK binds to cdk1/cyclin B1, microtubules and PRC1 via its unique region near the C terminus. TOPK co-localized closely with cdk1 throughout the cell cycle in vivo. Collectively, these data indicate that TOPK, which makes a kinase-substrate complex with cdk1/cyclin B1 and PRC1 on microtubules during mitosis, enhances the cdk1/cyclin B1-dependent phosphorylation of PRC1 and thereby strongly promotes cytokinesis.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citocinesis , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteína Quinasa CDC2 , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Ciclina B , Ciclina B1 , Células HeLa , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mitosis , Fosforilación , Estructura Terciaria de Proteína , TransfecciónRESUMEN
The purpose of this study is to establish a tumor marker that can be applied for the early detection and follow-up of oral cancer patients. Employing the proteomic approach using MALDI TOF-MS, 2-DE, patient's sera and culturing cell lines, the serum autoantibodies (autoAbs) were screened and the serum levels were estimated by ELISA. Targeting the tumor cell invasion into the surrounding stromal tissues, MRC-5 human fibroblasts were employed as the target cells and a mitochondrial membrane protein, sideroflexin 3 (SFXN3), was identified. The serum anti-SFXN3-autoAb levels elevated in patients with the oral squamous cell carcinoma significantly: with 77% sensitivity and 89% specificity against control samples. The serum anti-SFXN3-autoAb levels were mildly correlated with the primary tumor sizes, however, the levels were slightly highly elevated in T1 early cancer. An immunohistochemical analysis revealed that the SFXN3 protein is expressed in the stromal fibroblasts between the caner nests and also in the basal layer of the squamous epithelium. Changes in the serum anti-SFXN3-autoAb levels after therapy correlated with the clinical tumor burden. These findings demonstrated that the serum anti-SFXN3-autoAb is worthy of clinical evaluation as a potentially of the novel tumor maker for the early detection of oral squamous cell carcinoma.