RESUMEN
We present an approach to estimate the concentration of a biomolecule in a solution by sampling several nanoliter-scale volumes and determining if the volumes contain any biomolecules. In this method, varying volume fractions (nanoliter-scale) of a sample of nucleic acids are introduced to an array of uniform volume reaction wells (100 µL), which are then fluorescently imaged to determine if signal is above a threshold after nucleic acid amplification, all without complex instrumentation. The nanoliter volumes are generated and introduced using the simple positioning of a permanent magnet, and imaging is performed with a cellphone-based fluorescence detection scheme, both methods suitable for limited-resource settings. We use the length of time a magnetic field is applied to generate a calibrated number of nanoliter ferrodrops of sample mixed with ferrofluid at a step emulsification microfluidic junction. Each dose of ferrodrops is then transferred into larger microliter scale reaction wells on chip through a simple shift of the external magnet. Nucleic acid amplification is achieved using loop-mediated isothermal amplification (LAMP). By repeating each nanoliter dosage a number of times to calculate the probability of a positive signal at each dosage, we can use a binomial probability distribution to estimate the sample nucleic acid concentration. Using this approach we demonstrate detection of lambda DNA molecules down to 25 copies per microliter. The ability to dose separate nanoliter-scale volumes of a low-volume sample across wells in this platform is suited for multiplexed assays. This platform has the potential to be applied to a range of diseases by mixing a sample with magnetic nanoparticles.
Asunto(s)
ADN/análisis , Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Emulsiones/química , Diseño de Equipo , Técnicas Analíticas Microfluídicas/economía , Técnicas de Amplificación de Ácido Nucleico/economía , Tamaño de la MuestraRESUMEN
We present a microfluidic droplet generation technique, where instead of pumps, only magnetic field gradient strength adjusted by the position of an external magnet is used for controllable emulsification of ferrofluid containing solutions. Uniform droplet generation at frequencies O(1-100) Hz per channel for long periods of time (10s of minutes) were easily achieved. In this method, adding magnetic nanoparticles (10 nm) into aqueous solutions imparts a magnetic body force on the fluid in the presence of an external magnetic field gradient. Consequently, the aqueous fluid moves toward the position of an external magnet and towards a junction with a larger width and height oil filled reservoir. Emulsification occurs at the junction due to a rapid change in surface tension forces due to the abrupt change in channel height. Droplet generation rate could be controlled by adjusting surface tension/viscosity, number of channels, and strength of the magnetic force. The geometry of the channel, rather than flow rates or magnetic force, plays the dominant role in defining the droplet size. In addition, reagents mixed with ferrofluids could also be introduced from two or more separate inlets and mixed prior to emulsification as they move toward the step driven by magnetic force. Mixing reagents on chip and forming droplets all within a small foot-print defined by movement of an external magnet is a unique feature of this method suitable for point-of-care diagnostics and other bioengineering applications.
RESUMEN
Particles traveling at high velocities through microfluidic channels migrate from their starting streamlines due to inertial lift forces. Theories predict different scaling laws for these forces and there is little experimental evidence by which to validate theory. Here we experimentally measure the three dimensional positions and migration velocities of particles. Our experimental method relies on a combination of sub-pixel accurate particle tracking and velocimetric reconstruction of the depth dimension to track thousands of individual particles in three dimensions. We show that there is no simple scaling of inertial forces upon particle size, but that migration velocities agree well with numerical simulations and with a two-term asymptotic theory that contains no unmeasured parameters.
RESUMEN
Microfluidic systems are often dominated by their surfaces because of the high surface area to volume ratios in microchannel flows or drop-based systems. Here we highlight recent work on engineering and exploiting surface effects to control the formation and motion of microdrops. We highlight work using precisely microstructured wetting surfaces to repel all manner of liquids even when the liquid-air surface tension is low. In a second paper, selective capillary filling and draining is used to pattern liquid and cell-laden gels for 3D culture. A final paper making use of vapor-driven surface tension effects to drive the motion of drop ensembles is also examined, exploring a new mechanism for drop control - including motion and merging. Surface-driven motion and patterning has been a widely successful area in microfluidics (e.g. electrowetting or patterned self-assembled monolayers) and recent work is extending into new directions that, once well-understood, should enable new applications.
Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Propiedades de Superficie , Técnicas de Cultivo de Célula/instrumentación , Línea Celular Tumoral , Diseño de Equipo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Tensión SuperficialRESUMEN
Lab on a chip systems have often focused on diagnostic, chemical, and cell analysis applications, however, more recently the scale and/or precision of micro-engineered systems has been applied in developing new therapies. In this issue we highlight recent work using microfluidic and micro-engineered systems in therapeutic applications. We discuss two approaches that use microfluidic precision to address challenges in filtering blood--to both remove unwanted pathogens and toxins and isolate rare cells of interest that have therapeutic potential. In both cases chemically-modified surfaces, a bioengineered mannose binding lectin on magnetic particles and antibody-functionalized reversibly degradable alginate film, provide the functionality to remove (or isolate) target cells of interest. The third paper we highlight generates microscale gels as protective niches for cell-based therapies. Importantly, the microgels are designed to have controlled porosity but also mechanical rigidity to protect housed therapeutic cells, like mesenchymal stem cells. We expect continued progress in micro- & nano-enabled therapies facilitated by the fabrication of new microstructured materials, precise separations, and closed-loop sensing and drug delivery.