Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Mol Cell Cardiol ; 65: 98-104, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24140799

RESUMEN

Remote ischemic preconditioning (RIPC) has emerged as a feasible and attractive therapeutic procedure for heart protection against ischemia/reperfusion (I/R) injury. However, its molecular mechanisms remain poorly understood. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that plays a key role in the cellular adaptation to hypoxia and ischemia. This study's aim was to test whether RIPC-induced cardioprotection requires HIF-1α upregulation to be effective. In the first study, wild-type mice and mice heterozygous for HIF1a (gene encoding the HIF-1α protein) were subjected to RIPC immediately before myocardial infarction (MI). RIPC resulted in a robust HIF-1α activation in the limb and acute cardioprotection in wild-type mice. RIPC-induced cardioprotection was preserved in heterozygous mice, despite the low HIF-1α expression in their limbs. In the second study, the role of HIF-1α in RIPC was evaluated using cadmium (Cd), a pharmacological HIF-1α inhibitor. Rats were subjected to MI (MI group) or to RIPC immediately prior to MI (R-MI group). Cd was injected 18 0min before RIPC (Cd-R-MI group). RIPC induced robust HIF-1α activation in rat limbs and significantly reduced infarct size (IS). Despite Cd's inhibition of HIF-1α activation, RIPC-induced cardioprotection was preserved in the Cd-R-MI group. RIPC applied immediately prior to MI increased HIF-1α expression and attenuated IS in rats and wild-type mice. However, RIPC-induced cardioprotection was preserved in partially HIF1a-deficient mice and in rats pretreated with Cd. When considered together, these results suggest that HIF-1α upregulation is unnecessary in acute RIPC.


Asunto(s)
Extremidades/irrigación sanguínea , Extremidades/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Precondicionamiento Isquémico , Animales , Cadmio/farmacología , Cardiotónicos/metabolismo , Activación Enzimática/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Masculino , Ratones , Infarto del Miocardio/patología , Miocardio/enzimología , Miocardio/patología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
2.
Shock ; 45(2): 192-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26555744

RESUMEN

Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy to protect the heart against ischemia-reperfusion (I/R) injury. The mechanisms by which remote ischemic conditioning (RIC) is protective are to date unknown, yet a well-accepted theory holds that the mitochondria play a central role. Mitochondria are dynamic organelles that undergo fusion and fission. Interventions that decrease mitochondrial fission or increase mitochondrial fusion have been associated with reduced I/R injury. However, whether RIPC influences mitochondrial dynamics or not has yet to be ascertained.We sought to determine the role played by mitochondrial dynamics in RIPC-induced cardioprotection. Male adult rats exposed in vivo to myocardial I/R were assigned to one of two groups, either undergoing 40 min of myocardial ischemia followed by 120 min of reperfusion (MI group) or four 5-min cycles of limb ischemia interspersed by 5 min of limb reperfusion, immediately prior to myocardial ischemia and 120 min of reperfusion (MI+RIPC group). After reperfusion, infarct size was assessed and myocardial tissue was analyzed by Western blot and electron microscopy. RIPC induced smaller infarct size (-28%), increased mitochondrial fusion protein OPA1, and preserved mitochondrial morphology. These findings suggest that mitochondrial dynamics play a role in the mechanisms of RIPC-induced cardioprotection.


Asunto(s)
Precondicionamiento Isquémico , Dinámicas Mitocondriales/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Microscopía Electrónica , Infarto del Miocardio/prevención & control , Miocardio/metabolismo , Miocardio/ultraestructura , Ratas , Ratas Wistar
3.
J Am Heart Assoc ; 5(9)2016 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-27664804

RESUMEN

BACKGROUND: Remote ischemic preconditioning (RIPC) is an attractive therapeutic procedure for protecting the heart against ischemia/reperfusion injury. Despite evidence of humoral mediators transported through the circulation playing a critical role, their actual identities so far remain unknown. We sought to identify plasmatic RIPC-induced metabolites that may play a role. METHODS AND RESULTS: Rat plasma samples from RIPC and control groups were analyzed using a targeted metabolomic approach aimed at measuring 188 metabolites. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to identify the metabolites that discriminated between groups. Plasma samples from 50 patients subjected to RIPC were secondarily explored to confirm the results obtained in rats. Finally, a combination of the metabolites that were significantly increased in both rat and human plasma was injected prior to myocardial ischemia/reperfusion in rats. In the rat samples, 124 molecules were accurately quantified. Six metabolites (ornithine, glycine, kynurenine, spermine, carnosine, and serotonin) were the most significant variables for marked differentiation between the RIPC and control groups. In human plasma, analysis confirmed ornithine decrease and kynurenine and glycine increase following RIPC. Injection of the glycine and kynurenine alone or in combination replicated the protective effects of RIPC seen in rats. CONCLUSIONS: We have hereby reported significant variations in a cocktail of amino acids and biogenic amines after remote ischemic preconditioning in both rat and human plasma. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01390129.

4.
PLoS One ; 9(9): e107950, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25237809

RESUMEN

UNLABELLED: Recent findings indicate that apolipoprotein A-I (ApoA-I) may be a protective humoral mediator involved in remote ischemic preconditioning (RIPC). This study sought to determine if ApoA-I mediates its protective effects via the RISK and SAFE signaling pathways implicated in RIPC. Wistar rats were allocated to one of the following groups. CONTROL: rats were subjected to myocardial ischemia/reperfusion (I/R) without any further intervention; RIPC: four cycles of limb I/R were applied prior to myocardial ischemia; ApoA-I: 10 mg/Kg of ApoA-I were intravenously injected prior to myocardial ischemia; ApoA-I + inhibitor: pharmacological inhibitors of RISK/SAFE pro-survival kinase (Akt, ERK1/2 and STAT-3) were administered prior to ApoA-I injection. Infarct size was significantly reduced in the RIPC group compared to CONTROL. Similarly, ApoA-I injection efficiently protected the heart, recapitulating RIPC-induced cardioprotection. The ApoA-I protective effect was associated with Akt and GSK-3ß phosphorylation and substantially inhibited by pretreatment with Akt and ERK1/2 inhibitors. Pretreatment with ApoA-I in a rat model of I/R recapitulates RIPC-induced cardioprotection and shares some similar molecular mechanisms with those of RIPC-involved protection of the heart.


Asunto(s)
Apolipoproteína A-I/farmacología , Cardiotónicos/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Transducción de Señal , Animales , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/prevención & control , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA