Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Surg ; 47(10): 2340-2346, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37389644

RESUMEN

BACKGROUND: Accurately predicting which patients are most likely to benefit from massive transfusion protocol (MTP) activation may help patients while saving blood products and limiting cost. The purpose of this study is to explore the use of modern machine learning (ML) methods to develop and validate a model that can accurately predict the need for massive blood transfusion (MBT). METHODS: The institutional trauma registry was used to identify all trauma team activation cases between June 2015 and August 2019. We used an ML framework to explore multiple ML methods including logistic regression with forward and backward selection, logistic regression with lasso and ridge regularization, support vector machines (SVM), decision tree, random forest, naive Bayes, XGBoost, AdaBoost, and neural networks. Each model was then assessed using sensitivity, specificity, positive predictive value, and negative predictive value. Model performance was compared to that of existing scores including the Assessment of Blood Consumption (ABC) and the Revised Assessment of Bleeding and Transfusion (RABT). RESULTS: A total of 2438 patients were included in the study, with 4.9% receiving MBT. All models besides decision tree and SVM attained an area under the curve (AUC) of above 0.75 (range: 0.75-0.83). Most of the ML models have higher sensitivity (0.55-0.83) than the ABC and RABT score (0.36 and 0.55, respectively) while maintaining comparable specificity (0.75-0.81; ABC 0.80 and RABT 0.83). CONCLUSIONS: Our ML models performed better than existing scores. Implementing an ML model in mobile computing devices or electronic health record has the potential to improve the usability.


Asunto(s)
Transfusión Sanguínea , Hemorragia , Humanos , Teorema de Bayes , Hemorragia/diagnóstico , Hemorragia/etiología , Hemorragia/terapia , Transfusión Sanguínea/métodos , Valor Predictivo de las Pruebas , Aprendizaje Automático
2.
Surv Ophthalmol ; 67(3): 793-800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34487742

RESUMEN

Given the rising number of patients with blindness from macular, optic nerve, and visual pathway disease, there is considerable interest in the potential of electrical stimulation devices to restore vision. Electrical devices for restoration of visual function can be grouped into three categories: (1) visual prostheses whose goal is to bypass damaged areas and directly activate downstream intact portions of the visual pathway; (2) electric field stimulation whose goal is to activate endogenous transcriptional and molecular signaling pathways to promote neuroprotection and neuro-regeneration; and (3) neuromodulation whose stimulation would resuscitate neural circuits vital to coordinating responses to visual input.  In this review, we discuss these three approaches, describe advances made in the different fields, and comment on limitations and potential future directions.


Asunto(s)
Ceguera , Terapia por Estimulación Eléctrica , Prótesis Visuales , Ceguera/terapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA