RESUMEN
Inherited retinal diseases (IRDs) are characterized by progressive vision loss. There are over 270 causative IRD genes, and variants within the same gene can cause clinically distinct disorders. One example is RLBP1, which encodes CRALBP. CRALBP is an essential protein in the rod and cone visual cycles that take place primarily in the retinal pigment epithelium (RPE) but also in Müller cells of the neuroretina. RLBP1 variants lead to three clinical subtypes: Bothnia dystrophy, retinitis punctata albescens, and Newfoundland rod-cone dystrophy. We modeled RLBP1-IRD subtypes using patient-specific induced pluripotent stem cell (iPSC)-derived RPE and identified pathophysiological markers that served as pertinent therapeutic read-outs. We developed an AAV2/5-mediated gene-supplementation strategy and performed a proof-of-concept study in the human models, which was validated in vivo in an Rlbp1-/- murine model. Most importantly, we identified a previously unsuspected smaller CRALBP isoform that is naturally and differentially expressed both in the human and murine retina. This previously unidentified isoform is produced from an alternative methionine initiation site. This work provides further insights into CRALBP expression and RLBP1-associated pathophysiology and raises important considerations for successful gene-supplementation therapy.
RESUMEN
SpliceAI is an open-source deep learning splicing prediction algorithm that has demonstrated in the past few years its high ability to predict splicing defects caused by DNA variations. However, its outputs present several drawbacks: (1) although the numerical values are very convenient for batch filtering, their precise interpretation can be difficult, (2) the outputs are delta scores which can sometimes mask a severe consequence, and (3) complex delins are most often not handled. We present here SpliceAI-visual, a free online tool based on the SpliceAI algorithm, and show how it complements the traditional SpliceAI analysis. First, SpliceAI-visual manipulates raw scores and not delta scores, as the latter can be misleading in certain circumstances. Second, the outcome of SpliceAI-visual is user-friendly thanks to the graphical presentation. Third, SpliceAI-visual is currently one of the only SpliceAI-derived implementations able to annotate complex variants (e.g., complex delins). We report here the benefits of using SpliceAI-visual and demonstrate its relevance in the assessment/modulation of the PVS1 classification criteria. We also show how SpliceAI-visual can elucidate several complex splicing defects taken from the literature but also from unpublished cases. SpliceAI-visual is available as a Google Colab notebook and has also been fully integrated in a free online variant interpretation tool, MobiDetails ( https://mobidetails.iurc.montp.inserm.fr/MD ).
Asunto(s)
Algoritmos , Empalme del ARN , Humanos , Empalme del ARN/genéticaRESUMEN
Human-induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) is a powerful tool for pathophysiological studies and preclinical therapeutic screening, as well as a source for clinical cell transplantation. Thus, it must be validated for maturity and functionality to ensure correct data readouts and clinical safety. Previous studies have validated hiPSC-derived RPE as morphologically characteristic of the tissue in the human eye. However, information concerning the expression and functionality of ion channels is still limited. We screened hiPSC-derived RPE for the polarized expression of a panel of L-type (CaV 1.1, CaV 1.3) and T-type (CaV 3.1, CaV 3.3) Ca2+ channels, K+ channels (Maxi-K, Kir4.1, Kir7.1), and the Cl- channel ClC-2 known to be expressed in native RPE. We also tested the roles of these channels in key RPE functions using specific inhibitors. In addition to confirming the native expression profiles and function of certain channels, such as L-type Ca2+ channels, we show for the first time that T-type Ca2+ channels play a role in both phagocytosis and vascular endothelial growth factor (VEGF) secretion. Moreover, we demonstrate that Maxi-K and Kir7.1 channels are involved in the polarized secretion of VEGF and pigment epithelium-derived factor (PEDF). Furthermore, we show a novel localization for ClC-2 channel on the apical side of hiPSC-derived RPE, with an overexpression at the level of fluid-filled domes, and demonstrate that it plays an important role in phagocytosis, as well as VEGF and PEDF secretion. Taken together, hiPSC-derived RPE is a powerful model for advancing fundamental knowledge of RPE functions.
Asunto(s)
Canales de Calcio Tipo T/metabolismo , Canales de Cloruro/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Canales de Potasio/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Canales de Calcio Tipo T/genética , Diferenciación Celular , Canales de Cloruro/genética , Regulación de la Expresión Génica , Humanos , Canales de Potasio/genéticaRESUMEN
Choroideremia (CHM) is an x-linked recessive chorioretinal dystrophy, with 30% caused by nonsense mutations in the CHM gene resulting in an in-frame premature termination codon (PTC). Nonsense-mediated mRNA decay (NMD) is the cell's natural surveillance mechanism that detects and destroys PTC-containing transcripts, with UPF1 being the central NMD modulator. NMD efficiency can be variable amongst individuals with some transcripts escaping destruction, leading to the production of a truncated non-functional or partially functional protein. Nonsense suppression drugs, such as ataluren, target these transcripts and read-through the PTC, leading to the production of a full length functional protein. Patients with higher transcript levels are considered to respond better to these drugs, as more substrate is available for read-through. Using Quantitative reverse transcription PCR (RT-qPCR), we show that CHM mRNA expression in blood from nonsense mutation CHM patients is 2.8-fold lower than controls, and varies widely amongst patients, with 40% variation between those carrying the same UGA mutation [c.715 C>T; p.(R239*)]. These results indicate that although NMD machinery is at work, efficiency is highly variable and not wholly dependent on mutation position. No significant difference in CHM mRNA levels was seen between two patients' fibroblasts and their induced pluripotent stem cell-derived retinal pigment epithelium. There was no correlation between CHM mRNA expression and genotype, phenotype or UPF1 transcript levels. NMD inhibition with caffeine was shown to restore CHM mRNA transcripts to near wild-type levels. Baseline mRNA levels may provide a prognostic indicator for response to nonsense suppression therapy, and caffeine may be a useful adjunct to enhance treatment efficacy where indicated.
Asunto(s)
Coroideremia/tratamiento farmacológico , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Helicasas/genética , ARN Mensajero/sangre , Transactivadores/genética , Cafeína/administración & dosificación , Coroideremia/sangre , Coroideremia/genética , Coroideremia/fisiopatología , Codón sin Sentido/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Oxadiazoles/administración & dosificación , Fenotipo , Células Madre Pluripotentes/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismoRESUMEN
Retinitis pigmentosa (RP) is an inherited retinal dystrophy that causes progressive vision loss. The G56R mutation in NR2E3 is the second most common mutation causing autosomal dominant (ad) RP, a transcription factor that is essential for photoreceptor development and maintenance. The G56R variant is exclusively responsible for all cases of NR2E3-associated adRP. Currently, there is no treatment for NR2E3-related or, other, adRP, but genome editing holds promise. A pertinent approach would be to specifically knockout the dominant mutant allele, so that the wild type allele can perform unhindered. In this study, we developed a CRISPR/Cas strategy to specifically knockout the mutant G56R allele of NR2E3 and performed a proof-of-concept study in induced pluripotent stem cells (iPSCs) of an adRP patient. We demonstrate allele-specific knockout of the mutant G56R allele in the absence of off-target events. Furthermore, we validated this knockout strategy in an exogenous overexpression system. Accordingly, the mutant G56R-CRISPR protein was truncated and mis-localized to the cytosol in contrast to the (peri)nuclear localizations of wild type or G56R NR2E3 proteins. Finally, we show, for the first time, that G56R iPSCs, as well as G56R-CRISPR iPSCs, can differentiate into NR2E3-expressing retinal organoids. Overall, we demonstrate that G56R allele-specific knockout by CRISPR/Cas could be a clinically relevant approach to treat NR2E3-associated adRP.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genes Dominantes/genética , Mutación/genética , Retinitis Pigmentosa/genética , Alelos , Animales , Secuencia de Bases , Células COS , Línea Celular , Chlorocebus aethiops , Edición Génica/métodos , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Receptores Nucleares Huérfanos/genética , Retina/fisiologíaRESUMEN
Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.
Asunto(s)
Proteínas de la Matriz Extracelular/genética , Genotipo , Mutación Missense , Miosina VIIa/genética , Sitios de Empalme de ARN , Síndromes de Usher , Adulto , Femenino , Francia , Humanos , Masculino , Síndromes de Usher/clasificación , Síndromes de Usher/genéticaRESUMEN
Pathogenic variants in CRB1 lead to diverse recessive retinal disorders from severe Leber congenital amaurosis to isolated macular dystrophy. Until recently, no clear phenotype-genotype correlation and no appropriate mouse models existed. Herein, we reappraise the phenotype-genotype correlation of 50 patients with regards to the recently identified CRB1 isoforms: a canonical long isoform A localized in Müller cells (12 exons) and a short isoform B predominant in photoreceptors (7 exons). Twenty-eight patients with early onset retinal dystrophy (EORD) consistently had a severe Müller impairment, with variable impact on the photoreceptors, regardless of isoform B expression. Among them, two patients expressing wild type isoform B carried one variant in exon 12, which specifically damaged intracellular protein interactions in Müller cells. Thirteen retinitis pigmentosa patients had mainly missense variants in laminin G-like domains and expressed at least 50% of isoform A. Eight patients with the c.498_506del variant had macular dystrophy. In one family homozygous for the c.1562C>T variant, the brother had EORD and the sister macular dystrophy. In contrast with the mouse model, these data highlight the key role of Müller cells in the severity of CRB1-related dystrophies in humans, which should be taken into consideration for future clinical trials.
Asunto(s)
Células Ependimogliales/patología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Degeneración Macular/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Distrofias Retinianas/patología , Retinitis Pigmentosa/patología , Adolescente , Edad de Inicio , Empalme Alternativo , Niño , Preescolar , Células Ependimogliales/metabolismo , Proteínas del Ojo/química , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Degeneración Macular/genética , Degeneración Macular/metabolismo , Masculino , Proteínas de la Membrana/química , Modelos Moleculares , Mutación Missense , Proteínas del Tejido Nervioso/química , Mutación Puntual , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Estudios Retrospectivos , Eliminación de Secuencia , Adulto JovenRESUMEN
Choroideremia is a monogenic X-linked recessive chorioretinal disease linked to pathogenic variants in the CHM gene. These variants are commonly base-pair changes, frameshifts, or large deletions. However, a few rare or unusual events comprising large duplications, a retrotransposon insertion, a pseudo-exon activation, and two c-98 promoter substitutions have also been described. Following an exhaustive molecular diagnosis, we identified and characterized three novel atypical disease-causing variants in three unrelated male patients. One is a first-ever reported Alu insertion within CHM and the other two are nucleotide substitutions, c.-90C>G and c.-108A>G, affecting highly conserved promoter positions. RNA analysis combined with western blot and functional assays of patient cells established the pathogenicity of the Alu insertion and the c.-90C>G alteration. Furthermore, luciferase reporter assays suggested a CHM transcription defect associated with the c.-90C>G and c.-108A>G variants. These findings broaden our knowledge of the mutational spectrum and the transcriptional regulation of the CHM gene.
Asunto(s)
Coroideremia/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Elementos Alu/genética , Secuencia de Bases , Exones/genética , Humanos , Regiones Promotoras Genéticas/genéticaRESUMEN
Choroideremia (CHM) is an inherited retinal dystrophy characterised by progressive degeneration of photoreceptors, retinal pigment epithelium (RPE) and underlying choroid. It is caused by loss-of-function mutations in CHM, which has an X-linked inheritance, and is thus an ideal candidate for gene replacement strategies. CHM encodes REP1, which plays a key role in the prenylation of Rab GTPases. We recently showed that an induced pluripotent stem cell (iPSc)-derived RPE model for CHM is fully functional and reproduces the underlying prenylation defect. This criterion can thus be used for testing the pathogenic nature of novel variants. Until recently, missense variants were not associated with CHM. Currently, at least nine such variants have been reported but only two have been shown to be pathogenic. We report here the characterisation of the third pathogenic missense CHM variant, p.Leu457Pro. Clinically, the associated phenotype is indistinguishable from that of loss-of-function mutations. By contrast, this missense variant results in wild type CHM expression levels and detectable levels of mutant protein. The prenylation status of patient-specific fibroblasts and iPSc-derived RPE is within the range observed for loss-of-function mutations, consistent with the clinical phenotype. Lastly, considering the current climate of CHM gene therapy, we assayed whether the presence of mutant REP1 could interfere with a gene replacement strategy by testing the prenylation status of patient-specific iPSc-derived RPE following AAV-mediated gene transfer. Our results show that correction of the functional defect is possible and highlight the predictive value of these models for therapy screening prior to inclusion in clinical trials.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Coroideremia/genética , Coroides/metabolismo , Coroideremia/terapia , Fibroblastos/metabolismo , Genes Ligados a X/genética , Terapia Genética/métodos , Humanos , Células Madre Pluripotentes Inducidas , Mutación , Mutación Missense/genética , Linaje , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proteínas de Unión al GTP rab/metabolismoRESUMEN
: Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of diseases with more than 250 causative genes. The most common form is retinitis pigmentosa. IRDs lead to vision impairment for which there is no universal cure. Encouragingly, a first gene supplementation therapy has been approved for an autosomal recessive IRD. However, for autosomal dominant IRDs, gene supplementation therapy is not always pertinent because haploinsufficiency is not the only cause. Disease-causing mechanisms are often gain-of-function or dominant-negative, which usually require alternative therapeutic approaches. In such cases, genome-editing technology has raised hopes for treatment. Genome editing could be used to i) invalidate both alleles, followed by supplementation of the wild type gene, ii) specifically invalidate the mutant allele, with or without gene supplementation, or iii) to correct the mutant allele. We review here the most prevalent genes causing autosomal dominant retinitis pigmentosa and the most appropriate genome-editing strategy that could be used to target their different causative mutations.
Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Retinitis Pigmentosa/terapia , Animales , Sistemas CRISPR-Cas , Humanos , Mutación , Retinitis Pigmentosa/genéticaRESUMEN
Choroideremia (CHM) is an X-linked chorioretinal dystrophy that is caused by mutations within a single gene, CHM Currently no effective treatment exists for these patients. Since over 30% of patients harbour nonsense mutations in CHM, nonsense suppression therapy using translational readthrough inducing drugs may provide functional rescue of REP1, thus attenuating progressive sight loss. Here, we employed two CHM model systems to systematically test the efficacy and safety of ataluren (PTC124) and its novel analog PTC-414: (1) the chmru848 zebrafish, the only nonsense mutation animal model of CHM harbouring a TAA nonsense mutation, and (2) a primary human fibroblast cell line from a CHM patient harbouring a TAG nonsense mutation. PTC124 or PTC-414 treatment of chmru848 embryos led to a â¼2.0-fold increase in survival, prevented the onset of retinal degeneration with reduced oxidative stress and apoptosis, increased rep1 protein by 23.1% (PTC124) and 17.2% (PTC-414) and restored biochemical function as confirmed through in vitro prenylation assays (98 ± 2% [PTC124] and 68 ± 5% [PTC-414]). In CHMY42X/y fibroblasts, there was a recovery of prenylation activity following treatment with either PTC124 (42 ± 5%) or PTC-414 (36 ± 11%), although an increase in REP1 protein was not detected in these cells, in contrast to the zebrafish model. This comprehensive study on the use of PTC124 and PTC-414 as successful nonsense suppression agents for the treatment of CHM highlights the translational potential of these drugs for inherited retinal disease.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Coroideremia/tratamiento farmacológico , Degeneración Retiniana/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Coroideremia/genética , Coroideremia/patología , Codón sin Sentido , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Oxadiazoles/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Retina/efectos de los fármacos , Retina/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Pez Cebra , Proteínas de Pez CebraRESUMEN
Inherited retinal dystrophies (IRDs) are a leading cause of visual impairment in the developing world. These conditions present an irreversible dysfunction or loss of neural retinal cells, which significantly impacts quality of life. Due to the anatomical accessibility and immunoprivileged status of the eye, ophthalmological research has been at the forefront of innovative and advanced gene- and cell-based therapies, both of which represent great potential as therapeutic treatments for IRD patients. However, due to a genetic and clinical heterogeneity, certain IRDs are not candidates for these approaches. New advances in the field of genome editing using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) have provided an accurate and efficient way to edit the human genome and represent an appealing alternative for treating IRDs. We provide a brief update on current gene augmentation therapies for retinal dystrophies. Furthermore, we discuss recent advances in the field of genome editing and stem cell technologies, which together enable precise and personalized therapies for patients. Lastly, we highlight current technological limitations and barriers that need to be overcome before this technology can become a viable treatment option for patients.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Edición Génica/métodos , Terapia Genética/métodos , Enfermedades de la Retina/genética , Enfermedades de la Retina/terapia , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Calidad de Vida , Enfermedades de la Retina/diagnósticoRESUMEN
Severe deficiency in lysosomal ß-glucuronidase (ß-glu) enzymatic activity results in mucopolysaccharidosis (MPS) VII, an orphan disease with symptoms often appearing in early childhood. Symptoms are variable, but many patients have multiple organ disorders including neurological defects. At the cellular level, deficiency in ß-glu activity leads to abnormal accumulation of glycosaminoglycans (GAGs), and secondary accumulation of GM2 and GM3 gangliosides, which have been linked to neuroinflammation. There have been encouraging gene transfer studies in the MPS VII mouse brain, but this is the first study attempting the correction of the >200-fold larger and challenging canine MPS VII brain. Here, the efficacy of a helper-dependent (HD) canine adenovirus (CAV-2) vector harboring a human GUSB expression cassette (HD-RIGIE) in the MPS VII dog brain was tested. Vector genomes, ß-glu activity, GAG content, lysosome morphology and neuropathology were analyzed and quantified. Our data demonstrated that CAV-2 vectors preferentially transduced neurons and axonal retrograde transport from the injection site to efferent regions was efficient. HD-RIGIE injections, associated with mild and transient immunosuppression, corrected neuropathology in injected and noninjected structures throughout the cerebrum. These data support the clinical evaluation of HD CAV-2 vectors to treat the neurological defects associated with MPS VII and possibly other neuropathic lysosomal storage diseases.
Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Mucopolisacaridosis VII/genética , beta-Glucosidasa/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Perros , Regulación Enzimológica de la Expresión Génica , Glicosaminoglicanos/metabolismo , Humanos , Ratones , Mucopolisacaridosis VII/terapia , Mucopolisacaridosis VII/veterinaria , beta-Glucosidasa/administración & dosificación , beta-Glucosidasa/biosíntesisRESUMEN
Variants in rhodopsin (RHO) have been linked to autosomal dominant congenital stationary night blindness (adCSNB), which affects the ability to see in dim light, and the pathogenetic mechanism is still not well understood. In this study we report two novel RHO variants found in adCSNB families, p.W265R and p.A269V, that map in the sixth transmembrane domain of RHO protein. We applied in silico molecular simulation and in vitro biochemical and molecular studies to characterize the two new variants and compare the molecular determinants to two previously characterized adCSNB variants, p.G90D and p.T94I, that map in the second transmembrane domain of the RHO protein. We demonstrate that W265R and A269V cause constitutive activation of RHO with light-independent G protein coupling and impaired binding to arrestin. Differently, G90D and T94I are characterized by slow kinetics of RHO activation and deactivation. This study provides new evidence on the differential contribution of transmembrane α-helixes two and six to the interaction with intracellular transducers of RHO and mutations in these helixes result in a similar phenotype in patients but with distinct molecular effects.
Asunto(s)
Mutación , Ceguera Nocturna , Rodopsina , Rodopsina/genética , Rodopsina/química , Rodopsina/metabolismo , Humanos , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Miopía/genética , Miopía/metabolismo , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Conformación Proteica en Hélice alfa , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Masculino , Femenino , Linaje , Unión Proteica , Modelos Moleculares , Arrestina/genética , Arrestina/metabolismo , Arrestina/químicaRESUMEN
X-linked retinitis pigmentosa (XLRP) is characterized by progressive vision loss leading to legal blindness in males and a broad severity spectrum in carrier females. Pathogenic alterations of the retinitis pigmentosa GTPase regulator gene (RPGR) are responsible for over 70% of XLRP cases. In the retina, the RPGRORF15 transcript includes a terminal exon, called ORF15, that is altered in the large majority of RPGR-XLRP cases. Unfortunately, due to its highly repetitive sequence, ORF15 represents a considerable challenge in terms of sequencing for molecular diagnostic laboratories. However, in a recent preliminary work Yahya et al. reported a long-read sequencing approach seeming promising. Here, the aim of the study was to validate and integrate this new sequencing strategy in a routine screening workflow. For that purpose, we performed a masked test on 52 genomic DNA samples from male and female individuals carrying 32 different pathogenic ORF15 variations including 20 located in the highly repetitive region of the exon. For the latter, we have obtained a detection rate of 80-85% in males and 60-80% in females after bioinformatic analyses. These numbers raised to 100% for both status after adding a complementary visual inspection of ORF15 long-reads. In accordance with these results, and considering the frequency of ORF15 pathogenic variations in XLRP, we suggest that a long-read screening of ORF15 should be systematically considered before any other sequencing approach in subjects with a diagnosis compatible with XLRP.
Asunto(s)
Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/virología , Replicación Viral , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Biomarcadores , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Permeabilidad , Epitelio Pigmentado de la Retina/ultraestructuraRESUMEN
There is an emblematic clinical and genetic heterogeneity associated with inherited retinal diseases (IRDs). The most common form is retinitis pigmentosa (RP), a rod-cone dystrophy caused by pathogenic variants in over 80 different genes. Further complexifying diagnosis, different variants in individual RP genes can also alter the clinical phenotype. USH2A is the most prevalent gene for autosomal-recessive RP and one of the most challenging because of its large size and, hence, large number of variants. Moreover, USH2A variants give rise to non-syndromic and syndromic RP, known as Usher syndrome (USH) type 2, which is associated with vision and hearing loss. The lack of a clear genotype-phenotype correlation or prognostic models renders diagnosis highly challenging. We report here a long-awaited differential non-syndromic RP and USH phenotype in three human disease-specific models: fibroblasts, induced pluripotent stem cells (iPSCs), and mature iPSC-derived retinal organoids. Moreover, we identified distinct retinal phenotypes in organoids from multiple RP and USH individuals, which were validated by isogenic-corrected controls. Non-syndromic RP organoids showed compromised photoreceptor differentiation, whereas USH organoids showed a striking and unexpected cone phenotype. Furthermore, complementary clinical investigations identified macular atrophy in a high proportion of USH compared with RP individuals, further validating our observations that USH2A variants differentially affect cones. Overall, identification of distinct non-syndromic RP and USH phenotypes in multiple models provides valuable and robust readouts for testing the pathogenicity of USH2A variants as well as the efficacy of therapeutic approaches in complementary cell types.
Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Retinitis Pigmentosa/diagnóstico , Organoides , Fenotipo , Proteínas de la Matriz Extracelular/genéticaRESUMEN
DFNA68 is a rare subtype of autosomal dominant nonsyndromic hearing impairment caused by heterozygous alterations in the HOMER2 gene. To date, only 5 pathogenic or likely pathogenic coding variants, including two missense substitutions (c.188 C > T and c.587 G > C), a single base pair duplication (c.840dupC) and two short deletions (c.592_597delACCACA and c.832_836delCCTCA) have been described in 5 families. In this study, we report a novel HOMER2 variation, identified by massively parallel sequencing, in a Sicilian family suffering from progressive dominant hearing loss over 3 generations. This novel alteration is a nonstop substitution (c.1064 A > G) that converts the translational termination codon (TAG) of the gene into a tryptophan codon (TGG) and is predicted to extend the HOMER2 protein by 10 amino acids. RNA analyses from the proband suggested that HOMER2 transcripts carrying the nonstop variant escaped the non-stop decay pathway. Finally, in vivo studies using a zebrafish animal model and behavioral tests clearly established the deleterious impact of this novel HOMER2 alteration on hearing function. This study identifies the fourth causal variation responsible for DFNA68 and describes a simple in vivo approach to assess the pathogenicity of candidate HOMER2 variants.
Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Animales , Codón de Terminación , Sordera/genética , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Linaje , Pez Cebra/genéticaRESUMEN
Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell-derived (iPSC-derived) retinal models. Our data showed that TBC1D32 was expressed during retinal development and that it played an important role in retinal pigment epithelium (RPE) differentiation. Furthermore, we identified a role for TBC1D32 in ciliogenesis of the RPE. We demonstrated elongated ciliary defects that resulted in disrupted apical tight junctions, loss of functionality (delayed retinoid cycling and altered secretion balance), and the onset of an epithelial-mesenchymal transition-like phenotype. Last, our results suggested photoreceptor differentiation defects, including connecting cilium anomalies, that resulted in impaired trafficking to the outer segment in cones and rods in TBC1D32 iPSC-derived retinal organoids. Overall, our data highlight a critical role for TBC1D32 in the retina and demonstrate that TBC1D32 mutations lead to RP. We thus identify TBC1D32 as an IRD-causative gene.