Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Am Chem Soc ; 145(20): 11245-11257, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37171220

RESUMEN

Described herein are studies toward the core modification of cyclic aliphatic amines using either a riboflavin/photo-irradiation approach or Cu(I) and Ag(I) to mediate the process. Structural remodeling of cyclic amines is explored through oxidative C-N and C-C bond cleavage using peroxydisulfate (persulfate) as an oxidant. Ring-opening reactions to access linear aldehydes or carboxylic acids with flavin-derived photocatalysis or Cu salts, respectively, are demonstrated. A complementary ring-opening process mediated by Ag(I) facilitates decarboxylative Csp3-Csp2 coupling in Minisci-type reactions through a key alkyl radical intermediate. Heterocycle interconversion is demonstrated through the transformation of N-acyl cyclic amines to oxazines using Cu(II) oxidation of the alkyl radical. These transformations are investigated by computation to inform the proposed mechanistic pathways. Computational studies indicate that persulfate mediates oxidation of cyclic amines with concomitant reduction of riboflavin. Persulfate is subsequently reduced by formal hydride transfer from the reduced riboflavin catalyst. Oxidation of the cyclic aliphatic amines with a Cu(I) salt is proposed to be initiated by homolysis of the peroxy bond of persulfate followed by α-HAT from the cyclic amine and radical recombination to form an α-sulfate adduct, which is hydrolyzed to the hemiaminal. Investigation of the pathway to form oxazines indicates a kinetic preference for cyclization over more typical elimination pathways to form olefins through Cu(II) oxidation of alkyl radicals.

2.
J Comput Chem ; 43(22): 1495-1503, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35737590

RESUMEN

A linearly parameterized functional form for a Cartesian representation of molecular dipole polarizability tensor surfaces (PTS) is described. The proposed expression for the PTS is a linearization of the recently reported power series ansatz of the original Applequist model, which by construction is non-linear in parameter space. This new approach possesses (i) a unique solution to the least-squares fitting problem; (ii) a low level of the computational complexity of the resulting linear regression procedure, comparable to those of the potential energy and dipole moment surfaces; and (iii) a competitive level of accuracy compared to the non-linear PTS model. Calculations of CH4 PTS, with polarizabilities fitted to 9000 training set points with the energies up to 14,000 cm-1 show an impressive level of accuracy of the linear PTS model obtained with ~1600 parameters: ~1% versus 0.3% RMSE for the non-linear vs. linear model on a test set of 1000 configurations.

3.
Inorg Chem ; 61(16): 6252-6262, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35416667

RESUMEN

Mixed 3d metal oxides are some of the most promising water oxidation catalysts (WOCs), but it is very difficult to know the locations and percent occupancies of different 3d metals in these heterogeneous catalysts. Without such information, it is hard to quantify catalysis, stability, and other properties of the WOC as a function of the catalyst active site structure. This study combines the site selective synthesis of a homogeneous WOC with two adjacent 3d metals, [Co2Ni2(PW9O34)2]10- (Co2Ni2P2) as a tractable molecular model for CoNi oxide, with the use of multiwavelength synchrotron X-radiation anomalous dispersion scattering (synchrotron XRAS) that quantifies both the location and percent occupancy of Co (∼97% outer-central-belt positions only) and Ni (∼97% inner-central-belt positions only) in Co2Ni2P2. This mixed-3d-metal complex catalyzes water oxidation an order of magnitude faster than its isostructural analogue, [Co4(PW9O34)2]10- (Co4P2). Four independent and complementary lines of evidence confirm that Co2Ni2P2 and Co4P2 are the principal WOCs and that Co2+(aq) is not. Density functional theory (DFT) studies revealed that Co4P2 and Co2Ni2P2 have similar frontier orbitals, while stopped-flow kinetic studies and DFT calculations indicate that water oxidation by both complexes follows analogous multistep mechanisms, including likely Co-OOH formation, with the energetics of most steps being lower for Co2Ni2P2 than for Co4P2. Synchrotron XRAS should be generally applicable to active-site-structure-reactivity studies of multi-metal heterogeneous and homogeneous catalysts.

4.
J Chem Phys ; 157(15): 154303, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36272791

RESUMEN

We present molecular dynamics (MD), polarizability driven MD (α-DMD), and pump-probe simulations of Raman spectra of the protonated nitrogen dimer N4H+, and some of its isotopologues, using the explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)]-F12b/aug-cc-pVTZ based potential energy surface in permutationally invariant polynomials (PIPs) of Yu et al. [J. Phys. Chem. A 119, 11623 (2015)] and a corresponding PIP-derived CCSD(T)/aug-cc-pVTZ-tr (N:spd, H:sp) polarizability tensor surface (PTS), the latter reported here for the first time. To represent the PTS in terms of a PIP basis, we utilize a recently described formulation for computing the polarizability using a many-body expansion in the orders of dipole-dipole interactions while generating a training set using a novel approach based on linear regression for potential energy distributions. The MD/α-DMD simulations reveal (i) a strong Raman activity at 260 and 2400 cm-1, corresponding to the symmetric N-N⋯H bend and symmetric N-N stretch modes, respectively; (ii) a very broad spectral region in the 500-2000 cm-1 range, assignable to the parallel N⋯H+⋯N proton transfer overtone; and (iii) the presence of a Fermi-like resonance in the Raman spectrum near 2400 cm-1 between the Σg + N-N stretch fundamental and the Πu overtone corresponding to perpendicular N⋯H+⋯N proton transfer.

5.
J Chem Phys ; 153(15): 154201, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33092372

RESUMEN

Radical enhanced intersystem crossing (EISC) of organic chromophores is an important approach to generate a long-lived triplet state for various electronic and optoelectronic applications. However, structural factors and design rules to promote EISC are not entirely clear. In this work, we report a series of boron dipyrromethene (BODIPY) derivatives covalently linked with a 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical with varying distances and topologies. We show that the incorporation of the TEMPO radical to BODIPY results in strong fluorescence quenching by up to 85% as a result of EISC and enhanced internal conversion. In BDP-2AR [2-(4-methyleneamino-TEMPO) BODIPY], a dyad with the shortest BODIPY-TEMPO through-bond distance, we observe the fastest EISC rate (τisc = 1.4 ns) and the longest triplet excited state lifetime (τT = 32 µs) compared to other distance and geometry variations. Contrary to previous reports and a general presumption, the BODIPY-TEMPO through-bond distance in this system does not play a significant role on the triplet formation rate and yield. Density functional theory suggests a folding of the TEMPO radical to form a sandwich-like structure with a BODIPY ring that leads to a decrease in the through-space distance, providing a new and an interesting insight for the radical enhanced intersystem.

6.
J Comput Chem ; 40(1): 212-221, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30284306

RESUMEN

We describe a bulk adjusted linear combination of atomic orbitals (BA-LCAO) approach for nanoparticles. In this method, we apply a many-body scaling function (in similar manner as in the environment-modified total energy based tight-binding method) to the DFT-derived diatomic AO interaction potentials (like in the conventional orbital-based density-functional tight binding approach) strictly according to atomic valences acquired naturally in a bulk structure. This modification, (a) facilitates all atom orbital-based electronic structure calculations of charge carrier dynamics in nanoscale structures with a molecular acceptor, and (b) allows to closely match high-level density functional calculation data (previously adjusted to the available experimental findings) for bulk structures. To advance practical application of the BA-LCAO approach we parameterize the Hamiltonian of wurtzite CdSe by fitting its band structure to a high-level DFT reference, corrected for experimentally measured band edges. Here, unlike in conventional DFTB approach, we: (1) use hydrogen-like AOs for the basis as exact atomic eigenfunctions, while orbital energies of which are taken from experimentally measured ionization potentials, and (2) parameterize the many-body scaling functions rather than the atomic wavefunctions. Development of this approach and parameters is guided by our goals to devise a method capable of simultaneously treating the problems of (i) interfacial electron/hole transfer between finite, variable size nanoparticles and electron scavenging molecules, and (ii) high-energy electronic transitions (Auger transitions) that mediate multi-exciton decay in quantum dots. Electronic structure results are described for CdSe quantum dots of various sizes. © 2018 Wiley Periodicals, Inc.

7.
J Comput Chem ; 40(2): 430-446, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30548650

RESUMEN

Configuration interaction ligand field theory (CI LFT) calculations of the electronic energy levels of ThO were performed by treating the molecular electronic states as Th 2+ free-ion levels perturbed by the ligand field of O2- . Twenty nine experimentally characterized ThO v = 0 energy levels, together with the energy difference between the v = 0 levels of the Y and W states were fitted using a CI LFT model that included Th 2+ 7s 2 , 6d7s, 6d2 , 7s7p, 6d7p, 5f7s, and 7p2 configurations. Predictions from these calculations were used to provide tentative assignments for 171 out of 250 ThO band heads listed by Gatterer et al. ["Molecular Spectra of Metallic Oxides", Specola Vaticana (1957)]. Term energies for 30 electronic states have been determined based on these assignments. Subsequently, the CI LFT model was refined by fitting to a set of 59 electronic term energies. The inclusion of CI effects together with integer valence, atomic-in-molecule, ionic bonding ideas reveals atomic energy level patterns that are multiply replicated in the molecular energy level patterns of six Th 2+ O2- atomic ion configurations (6d7s, 6d2 , 7s7p, 6d7p, 5f7s, and 7p2 ) revealing the underlying atomic ion structure that gives rise to the complex and seemingly erratic unassigned bands reported in the Vatican Atlas. © 2018 Wiley Periodicals, Inc.

8.
J Chem Phys ; 151(7): 074705, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438693

RESUMEN

CsPbI3 perovskite quantum dots (QDs) have shown great potential in light-harvesting and light-emitting applications, which often involve the transfer of charge carriers in and out of these materials. Here, we studied size-dependent charge separation (CS) and charge recombination (CR) between CsPbI3 QDs and rhodamine B (RhB) molecules, using transient absorption spectroscopy. When the average size decreases from 11.8 nm to 6.5 nm, the average intrinsic CS time constant decreases from 872 ± 52 ps to 40.6 ± 4.3 ps and the corresponding charge recombination time constant decreases from 3829 ± 51 ns to 1384 ± 54 ns. The observed trend of size-dependent CS and CR rates can be well explained by Marcus theory using the theoretically calculated CS and CR driving forces (ΔGCS and ΔGCR), molecular reorganization energy (λRhB), and electronic coupling strength between QD and RhB (HCS and HCR). Unlike the extensively studied more strongly quantum confined Cd chalcogenide QDs, the CsPbI3 QDs are in a weak quantum confinement regime in which size-dependent coupling strength plays a dominant role in the size-dependent charge transfer properties.

9.
J Chem Phys ; 150(12): 124704, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30927884

RESUMEN

In this work, we use wavefunction engineering by varying the size of Quantum Dots (QDs) and tuning the delocalization (or diffuseness) of frontier orbitals of an acceptor molecule to modulate charge transfer dynamics at the QD/molecule interface. For this purpose, we apply our recently developed bulk-adjusted linear combination of atomic orbitals (BA-LCAO) approach for nanostructures and a density functional theory (DFT) for the acceptor molecules. These electronic structure calculations, combined with extensive molecular dynamics simulations using a fragmented molecular mechanics (FraMM) force field, reveal intimate details of charge transfer across the QD/Acceptor interface. For the spherical wurtzite-(CdSe)201 and (CdSe)693 nanostructures, as model QDs with respective 2.8 and 4.1 nm diameters, and anthraquinone-2,3-dicarboxylic acid and its derivatives with the 7-OH, 7-OF, 10-BH, and 10-CH2 substituents, as model molecular acceptors, we find that (1) both the electron donating and withdrawing groups greatly enhance hole transfer by means of diffusing the acceptor HOMO; (2) electron transfer is affected only by the electron donating groups; (3) solvent effects are largely negligible for the orbital overlaps, and (4) consistent with spatial confinement theories, the electron density of the smaller QD penetrates farther into the vacuum than the corresponding density of the larger QD leading to stronger coupling with the acceptor. These findings suggest that (a) one can effectively control charge transfer across the QD/molecule interface by either changing the size of the QD or by tuning diffuseness of frontier orbitals of the acceptor molecule and (b) the combination of the recently developed BA-LCAO approach for QDs with a DFT for the acceptor molecules, facilitated by the use of the FraMM force field and extensive molecular dynamics simulations, provide qualitatively accurate description of charge transfer dynamics at the QD/acceptor interface.

10.
Chem Soc Rev ; 43(14): 5009-31, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24626313

RESUMEN

The widely used C-H functionalization strategies and some complexities in the Pd-catalyzed chemical transformations were analyzed. It was emphasized that in the course of catalysis various Pd-intermediates (including nano-scale Pd-clusters) could act as active catalysts. However, both identification of these catalytically active species and determination of factors controlling the overall catalytic process require more comprehensive and multi-disciplinary approaches. Recent joint computational and experimental approaches were instrumental in: (1) demonstrating that the addition of Pd(OAc)2 as a catalyst precursor to RSeH and RSH reagents forms the [Pd(SeR)2]n and [Pd(SR)2]n clusters, respectively, which show an unprecedented ability for selective synthesis of Markovnikov-type products starting with a mixture of reagents RSH/RSeH and acetylenic hydrocarbons; (2) predicting a valid mechanism of the amino acid ligand-assisted Pd(II)-catalyzed C-H activation that is shown to proceed via the formation of the catalytically active Pd(II) intermediate with a bidentately coordinated dianionic amino acid ligand; (3) demonstrating that the amino acid ligand plays crucial roles in the ligand-assisted Pd(II)-catalyzed C-H activation by acting as: (a) a weakly coordinating ligand to stabilize the desirable Pd(II)-precatalyst, (b) a soft proton donor and a bidentately coordinated dianionic ligand in the catalytically active Pd(II) intermediate, and (c) a proton acceptor accelerating the C-H deprotonation via the CMD mechanism; and (4) revealing the roles of the CsF base (and "cesium effect") in the Pd(0)/PCy3-catalyzed intermolecular arylation of the terminal ß-C(sp(3))-H bond of aryl amide and predicting the unprecedented "Cs2-I-F cluster" assisted mechanism for this reaction.


Asunto(s)
Cesio/química , Fenómenos Químicos , Ligandos , Modelos Moleculares , Estructura Molecular , Paladio/química , Aminoácidos , Catálisis
11.
Chemistry ; 20(15): 4297-307, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24604763

RESUMEN

In an effort to develop robust molecular sensitizers for solar fuel production, the electronic structure and photodynamics of transition-metal-substituted polyoxometalates (POMs), a novel class of compound in this context, was examined. Experimental and computational techniques including femtosecond (fs) transient absorption spectroscopy have been used to study the cobalt-containing Keggin POMs, [Co(II) W12 O40 ](6-) (1 a), [Co(III) W12 O40 ](5-) (2 a), [SiCo(II) (H2 O)W11 O39 ](6-) (3 a), and [SiCo(III) (H2 O)W11 O39 ](5-) (4 a), finding the longest lived charge transfer excited state so far observed in a POM and elucidating the electronic structures and excited-state dynamics of these compounds at an unprecedented level. All species exhibit a bi-exponential decay in which early dynamic processes with time constants in the fs domain yield longer lived excited states which decay with time constants in the ps to ns domain. The initially formed states of 1 a and 3 a are considered to result from metal-to-polyoxometalate charge transfer (MPCT) from Co(II) to W, while the longer-lived excited state of 1 a is tentatively assigned to a localized intermediate MPCT state. The excited state formed by the tetrahedral cobalt(II) centered heteropolyanion (1 a) is far longer-lived (τ=420 ps in H2 O; τ=1700 ps in MeCN) than that of 3 a (τ=1.3 ps), in which the single Co(II) atom is located in a pseudo-octahedral addendum site. Short-lived states are observed for the two Co(III) -containing heteropolyanions 2 a (τ=4.4 ps) and 4 a (τ=6.3 ps) and assigned solely to O→Co(III) charge transfer. The dramatically extended lifetime for 1 a versus 3 a is ascribed to a structural change permitted by the coordinatively flexible central site, weak orbital overlap of the central Co with the polytungstate framework, and putative transient valence trapping of the excited electron on a single W atom, a phenomenon not noted previously in POMs.

12.
J Phys Chem Lett ; 15(19): 5070-5075, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38701515

RESUMEN

New experimental measurements [Sun et al., Nature 2023, 623, 972] of the cyclic C10 reveal a cumulenic pentagon-like D5h structure at ∼5 K. However, the long-standing presumption that a large zero-point vibrational energy combined with an extremely flat D5h ↔ D10h ↔ D5h isomerization pathway washes out the pentagonal D5h structure and yields a symmetric D10h decagon remains at odds with the experiment. We resolve this issue with our fitting approach based on a bond-order charge-density matrix expressed in permutationally invariant polynomials. We train the model on τHCTH/cc-pVQZ data morphed to reproduce a relativistic all-electron CCSDT(Q)/CBS D5h-D10h potential energy barrier (benchmarked previously by others). Large scale diffusion Monte Carlo simulations in full dimensionality show that the vibrational ground state of C10 has compositional character of more than 96% D5h, fully reflecting the experimental imaging data. Quantum mechanical variational calculations in 1-D further suggest persistence of the D5h symmetry structure at higher temperatures.

13.
Inorg Chem ; 52(2): 671-8, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23286348

RESUMEN

A new series of complexes containing two electron donating groups, {M(CO)(3)}(+) ions, M = Re or Mn, on one polytungstate electron acceptor group have been prepared and characterized. These complexes containing two electron donating groups, {M(CO)(3)}(+) ions, M = Re or Mn, on one polytungstate electron acceptor group have been prepared and characterized. These two-component polyoxometalate (POM) compounds have been made by reaction of solvated {M(CO)(3)}(+) ions (M = Re or Mn) with [X(2)W(22)O(74)(OH)(2)](12-) (X = Sb or Bi) POM multidentate ligands in aqueous solution. These syntheses reveal that the fac-{WO(OH)(2)}(2+) groups in the terminal positions of these two POM ligands are easily replaced by the topologically equivalent units fac-{M(CO)(3)}(+). Four compounds, [X(2)W(20)O(70){M(CO)(3)}(2)](12-) (1a: X = Sb, M = Re; 1b: X = Bi, M = Re; 2a: X = Sb, M = Mn; 2b: X = Bi, M = Mn) have been isolated and characterized of X-ray crystallography, spectroscopic, and computational methods. The charge transfer dynamics, investigated by femtosecond transient absorption (TA) spectroscopy of 1a and 1b combined with the density functional theory (DFT) calculations indicate that both complexes exhibit metal-to-polyoxometalate charge-transfer (MPCT) from the Re centers to the POM ligands, while MPCT from the Mn centers to the POM ligands in 2a and 2b leads to decomposition of starting compounds. The studies suggest a general synthetic route to a potentially very large class of POM-based hybrid compounds.

14.
Inorg Chem ; 52(23): 13490-5, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24236503

RESUMEN

A polyoxometalate-supported trirhenium carbonyl cluster, mimicking metal oxide supported interfacial dyadic structures, has been synthesized and characterized. Multiple techniques, including computational and transient absorption spectroscopy, have been applied to characterize the charge-transfer dynamics occurring at the interfaces of this "double cluster". The stepwise kinetics of charge separation and recombination has been thoroughly investigated.

15.
J Phys Chem A ; 117(32): 6967-74, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23394309

RESUMEN

We present results on parameterization of reactive force field [van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396-9409] for investigating the properties of the [Nb6O19Hx]((8-x)-) Lindqvist polyoxoanion, x = 0-8, in water. Force-field parameters were fitted to an extensive data set consisting of structures and energetics obtained at the Perdew-Burke-Ernzerhof density functional level of theory. These parameters can reasonably describe pure water structure as well as water with an excess of H(+) and OH(-) ions. Molecular dynamics simulations were performed on [Nb6O19Hx]((8-x)-), x = 0-8, submerged in bulk water at 298 K. Analysis of the MD trajectories showed facile H atom transfer between the protonated polyoxoanion core and bulk water. The number of oxygen sites labeled with an H atom was found to vary depending on the pH of the solution. Detailed analysis shows that the total number of protons at bridging (terminal), η-O (µ2-O), sites ranges from 3(1) at pH 7, to 2(0) at pH 11, to 1(0) at pH 15. These findings closely reflect available experimental measurements.

16.
J Chem Theory Comput ; 19(17): 5690-5700, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37561135

RESUMEN

The electronic energy in the Hartree-Fock (HF) theory is the trace of the product of the charge density matrix (CDM) with the one-electron and two-electron matrices represented in an atomic orbital basis, where the two-electron matrix is also a function of the same CDM. In this work, we examine a formalism of analytic representation of a generic molecular potential energy surface (PES) as a sum of a linearly parameterized HF and a correction term, the latter formally representing the electron correlation energy, also linearly parameterized, by expressing the elements of CDM using permutationally invariant polynomials (PIPs). We show on a variety of numerical examples, ranging from exemplary two-electron systems HeH+ and H3+ to the more challenging cases of methanium (CH5+) fragmentation and high-energy tautomerization of formamide to formimidic acid that such a formulation requires significantly fewer, 10-20% of PIPs, to accomplish the same accuracy of the fit as the conventional representation at practically the same computational cost.

17.
Top Catal ; 65(1-4): 418-432, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35197715

RESUMEN

Using calculations, we show that a proposed Cu(I)-mediated deconstructive fluorination of N-benzoylated cyclic amines with Selectfluor® is feasible and may proceed through: (a) substrate coordination to a Cu(I) salt, (b) iminium ion formation followed by conversion to a hemiaminal, and (c) fluorination involving C-C cleavage of the hemiaminal. The iminium ion formation is calculated to proceed via a F-atom coupled electron transfer (FCET) mechanism to form, formally, a product arising from oxidative addition coupled with electron transfer (OA + ET). The subsequent ß-C-C cleavage/fluorination of the hemiaminal intermediate may proceed via either ring-opening or deformylative fluorination pathways. The latter pathway is initiated by opening of the hemiaminal to give an aldehyde, followed by formyl H-atom abstraction by a TEDA2+ radical dication, decarbonylation, and fluorination of the C3-radical center by another equivalent of Selectfluor®. In general, the mechanism for the proposed Cu(I)- mediated deconstructive C-H fluorination of N-benzoylated cyclic amines (LH) by Selectfluor® was calculated to proceed analogously to our previously reported Ag(I)-mediated reaction. In comparison to the Ag(I)-mediated process, in the Cu(I)-mediated reaction the iminium ion formation and hemiaminal fluorination have lower associated energy barriers, whereas the product release and catalyst re-generation steps have higher barriers.

18.
J Chem Theory Comput ; 18(1): 37-45, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34958587

RESUMEN

We describe an approach to constructing an analytic Cartesian representation of the molecular dipole polarizability tensor surface in terms of polynomials in interatomic distances with a training set of ab initio data points obtained from a molecular dynamics (MD) simulation or by any other available means. The proposed formulation is based on a perturbation treatment of the unmodified point dipole polarizability model of Applequist [ J. Am. Chem. Soc. 1972, 94, 2952] and is shown here to be, by construction (i) free of short-range or other singularities or discontinuities, (ii) symmetric and translationally invariant, and (iii) nonreliant on a body-fixed coordinate system. Permutational invariance of like nuclei is demonstrated to be readily applicable, making this approach useful for highly fluxional and reactive systems. Derivation of the method is described in detail, adding brief didactic numerical examples of H2 and H2O and concluding with an MD simulation of the Raman spectrum of H5O2+ at 300 K with the polarizability tensor fitted to CCSD(T)/aug-cc-pVTZ data obtained using the HBB-4B potential [ J. Chem. Phys. 2005, 122, 044308].

19.
Commun Chem ; 4(1): 33, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36697596

RESUMEN

Bis(2-chloroethyl) sulfide or sulfur mustard (HD) is one of the highest-tonnage chemical warfare agents and one that is highly persistent in the environment. For decontamination, selective oxidation of HD to the substantially less toxic sulfoxide is crucial. We report here a solvent-free, solid, robust catalyst comprising hydrophobic salts of tribromide and nitrate, copper(II) nitrate hydrate, and a solid acid (NafionTM) for selective sulfoxidation using only ambient air at room temperature. This system rapidly removes HD as a neat liquid or a vapor. The mechanisms of these aerobic decontamination reactions are complex, and studies confirm reversible formation of a key intermediate, the bromosulfonium ion, and the role of Cu(II). The latter increases the rate four-fold by increasing the equilibrium concentration of bromosulfonium during turnover. Cu(II) also provides a colorimetric detection capability. Without HD, the solid is green, and with HD, it is brown. Bromine K-edge XANES and EXAFS studies confirm regeneration of tribromide under catalytic conditions. Diffuse reflectance infrared Fourier transform spectroscopy shows absorption of HD vapor and selective conversion to the desired sulfoxide, HDO, at the gas-solid interface.

20.
J Phys Chem A ; 114(1): 535-42, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19957979

RESUMEN

Geometry and electronic structure of five species [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](10-) (1), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](9-) (2), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](8-) (3), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](7-) (4), and [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](6-) (5) with different oxidation states of Ru centers were studied at the density functional and COSMO levels of theory. These species are expected to be among the possible intermediates of the recently reported 1-catalyzed water oxidation (Geletii, Y. V.; Botar, B.; Kogerler, P.; Hillesheim, D. A.; Musaev, D. G.; Hill, C. L. Angew. Chem. Int. Ed. 2008, 47, 3896-3899 and Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia, S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. J. Am. Chem. Soc. 2008, 130, 5006-5007). It was shown that RI-BP86 correctly describes the geometry and energy of the low-lying electronic states of compound 1, whereas the widely used B3LYP approach overestimates the energy of its high-spin states. Including the solvent and/or countercation effects into calculations improves the agreement between the calculated and experimental data. It was found that the several HOMOs and LUMOs of the studied complexes are bonding and antibonding orbitals of the [Ru(4)O(4)(OH)(2)(H(2)O)(4)](6+) core, and four subsequent one-electron oxidations of 1, leading to formation of 2, 3, 4, and 5, respectively, involve only {Ru(4)} core orbitals. In other words, catalyst instability due to ligand oxidation in the widely studied Ru-blue dimer, [(bpy)(2)(O)Ru(V)-(mu-O)-Ru(V)(O)(bpy)(2)](4+), is not operable for 1: the latter all-inorganic catalyst is predicted to be stable under water oxidation turnover conditions. The calculated HOMOs and LUMOs of all the studied species are very close in energy and exhibit a "quasi-continuum" or "nanoparticle-type" electronic structure similar to that of nanosized transition metal clusters. This conclusion closely correlates with the experimentally reported oxidation and reduction features of 1 and explains the unusual linear dependence of oxidation potential versus charges for these compounds. The decrease in total negative charge of the system via 1 > 2 > 3 > 4 > 5, on average, decreases the {Ru(4)}-{SiW(10)} distance. It is predicted that at higher pH compound 1 will, initially, release protons from the mu-O(Ru) oxygen centers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA